晶圓的另一面:背面供電領(lǐng)域的最新發(fā)展
在我從事半導(dǎo)體設(shè)備的職業(yè)生涯之初,晶圓背面是個(gè)麻煩問(wèn)題。當(dāng)時(shí)發(fā)生了一件令我記憶深刻的事:在晶圓傳送的過(guò)程中,幾片晶圓從機(jī)器人刀片上飛了出來(lái)。收拾完殘局后,我們想到,可以在晶圓背面沉積各種薄膜,從而降低其摩擦系數(shù)。放慢晶圓傳送速度幫助我們解決了這個(gè)問(wèn)題,但我們的客戶(hù)經(jīng)理不太高興,因?yàn)樗麄儾坏貌幌蚩蛻?hù)解釋由此導(dǎo)致的產(chǎn)量減少的原因。
盡管初識(shí)晶圓背面的過(guò)程不太順利,但當(dāng)2010年代早期Xilinx Virtex-7系列FPGA發(fā)布時(shí),我開(kāi)始更加關(guān)注這個(gè)領(lǐng)域。Xilinx的產(chǎn)品是首批采用“堆疊硅互連技術(shù)”的異構(gòu)集成的FPGA[1]。該技術(shù)使用了在不同的FPGA組件之間傳遞電信號(hào)或電力的硅中介層,這一中介層通過(guò)創(chuàng)建部分通過(guò)硅晶圓的硅通孔 (TSV) 并在頂部創(chuàng)建信號(hào)重布線層而成形。通過(guò)對(duì)晶圓背面進(jìn)行工藝處理,連接硅通孔的兩端:晶圓的正面暫時(shí)粘到一個(gè)載體晶圓上,然后倒置硅中介層進(jìn)行工藝處理,隨后使用背面研磨和刻蝕來(lái)暴露硅通孔。Xilinx產(chǎn)品推出時(shí),我已經(jīng)離開(kāi)這個(gè)行業(yè),回到了研究生院。在課堂上,硅通孔的金屬化是個(gè)熱門(mén)話題,而隨著異構(gòu)集成不斷發(fā)展,晶圓背面也在工程師中成為了更有意思的話題。
圖1 硅中介層的工藝處理。通孔和初始金屬化之后,研磨晶圓背面直至到達(dá)通孔
雖然Xilinx FPGA使用了硅中介層來(lái)處理信號(hào)傳輸和帶寬要求,但去除中介層、直接使用晶圓背面進(jìn)行電氣布線的做法會(huì)更有前瞻性。背面供電是“背面”架構(gòu)的示例之一,它的供電不是來(lái)源于傳統(tǒng)的晶圓正面的后道工序,而是背面。這種架構(gòu)可能可以減少電源軌和有源器件之間的電壓降。作為背面架構(gòu)的示例,imec正嘗試在鰭片架構(gòu)中使用埋入式電源軌[2]。在imec的工藝流程中,導(dǎo)軌位于鰭片之間,類(lèi)似DRAM(動(dòng)態(tài)隨機(jī)存取存儲(chǔ)器)埋入式字線。為了信號(hào)傳輸建成后道工序后,在器件晶圓的背面創(chuàng)建硅通孔,連通埋入式導(dǎo)軌。為了供電也可以在背面進(jìn)行進(jìn)一步的互連。
圖2 參考資料[2],使用埋入式電源軌進(jìn)行背面供電(不按比例)
至少出于性能原因,器件晶圓背面的空間看起來(lái)很有發(fā)展?jié)摿?。把電源軌從前端移到背面可以緩解晶圓正面的擁塞,實(shí)現(xiàn)單元微縮并減少電壓降。領(lǐng)先的半導(dǎo)體邏輯企業(yè)深知背面供電的優(yōu)勢(shì),正積極開(kāi)發(fā)背面分布網(wǎng)絡(luò)。2021年年中,英特爾宣布將使用公司的“PowerVia”技術(shù)進(jìn)行晶背供電;臺(tái)積電也計(jì)劃在他們下一節(jié)點(diǎn)的技術(shù)中使用埋入式電源軌[3]。我們期待看到晶圓背面的未來(lái)發(fā)展。
參考資料:
[1] K. Saban. “Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough FPGA Capacity, Bandwidth, and Power Efficiency”, Xilinx WP380, 2012.
[2] J. Ryckaert et al., “Extending the roadmap beyond 3nm through system scaling boosters: A case study on Buried Power Rail and Backside Power Delivery,” 2019 Electron Devices Technology and Manufacturing Conference (EDTM), 2019, pp. 50-52, doi: 10.1109 / EDTM. 2019. 8731234.
[3] D. O’Laughlin, “Backside Power Delivery and Bold Bets at Intel”, https://www.fabricatedknowledge.com/p/backside-power-delivery-and-bold
評(píng)論