基于大數(shù)據(jù)與深度學(xué)習(xí)的穿戴式運動心率算法
在數(shù)字化與智能化技術(shù)迅猛發(fā)展的背景下,智能手表、智能戒指等穿戴式設(shè)備已悄然改變我們的日常生活,尤其在健康管理和運動表現(xiàn)優(yōu)化方面取得了顯著的成就。借助這些智能設(shè)備,監(jiān)測運動心率成為提升個人健身和運動性能的關(guān)鍵手段。
然而,在復(fù)雜多變的運動環(huán)境中,準(zhǔn)確測量心率數(shù)據(jù)對于傳統(tǒng)算法而言具有較大的技術(shù)瓶頂。本文將探討如何運用大數(shù)據(jù)和深度學(xué)習(xí)技術(shù)來開發(fā)創(chuàng)新的穿戴式運動心率算法,以應(yīng)對其中的技術(shù)挑戰(zhàn),并實現(xiàn)更為精準(zhǔn)和可靠的心率監(jiān)測。
運動心率算法的測量挑戰(zhàn)
運動心率,即人體在運動時心臟每分鐘收縮和舒張的周期性變化,是科學(xué)健身的重要指標(biāo)。通常來說,因不同的運動強度,心率都會隨之變化,同時也與用戶的體質(zhì)、年齡、性別等因素密切相關(guān)。 盡管穿戴式健康測量技術(shù)日益高效、準(zhǔn)確和便捷,但在實際應(yīng)用中,傳統(tǒng)的運動心率檢測算法仍然存在一些問題。特別是在用戶活動狀態(tài)突變或進行劇烈運動時,算法可能面臨狀態(tài)轉(zhuǎn)換適應(yīng)性差、難以準(zhǔn)確監(jiān)測并剔除運動偽影,以及無法識別用戶個體差異等問題,導(dǎo)致心率監(jiān)測反應(yīng)遲緩、心率數(shù)據(jù)失真。
■ 狀態(tài)轉(zhuǎn)換問題:一般來說,由于算法的優(yōu)化和數(shù)據(jù)處理通常需要一定的時間窗口來達到穩(wěn)定狀態(tài),因此在狀態(tài)轉(zhuǎn)換的瞬間,心率估計可能會出現(xiàn)延遲或不準(zhǔn)確的情況。這種滯后效應(yīng)不僅影響了實時心率的準(zhǔn)確性,還可能誤導(dǎo)用戶進行不適當(dāng)?shù)倪\動調(diào)整。
圖1:狀態(tài)轉(zhuǎn)化問題相關(guān)示例頻譜圖
■ 頻譜混疊問題:在高強度運動中,心跳頻率的顯著增加可能導(dǎo)致心率信號可能與身體的運動頻率發(fā)生重疊。傳統(tǒng)的心率監(jiān)測算法往往基于特定的頻率范圍來檢測心率,但當(dāng)心率信號與運動頻率相近或重疊時,算法難以區(qū)分和處理這兩個信號,從而導(dǎo)致測量精度的下降。
圖2:頻譜重疊問題相關(guān)示例頻譜圖
基于大數(shù)據(jù)與深度學(xué)習(xí)的全場景運動心率算法
當(dāng)前,在大數(shù)據(jù)與人工智能技術(shù)發(fā)展的推動下,穿戴式健康設(shè)備的心率檢測算法實現(xiàn)了飛速發(fā)展。這一算法深度融合了大數(shù)據(jù)與AI深度學(xué)習(xí)技術(shù),歷經(jīng)數(shù)據(jù)采集、預(yù)處理、大數(shù)據(jù)分析、特征提取、模型構(gòu)建與訓(xùn)練、模型評估與優(yōu)化,直至應(yīng)用實踐等多個環(huán)節(jié)。這一復(fù)雜流程充分利用了大數(shù)據(jù)的豐富信息與AI深度學(xué)習(xí)的強大能力,顯著提升了心率監(jiān)測的精準(zhǔn)度、實時性和個性化水平。
具體而言,該算法包含以下多維度優(yōu)化措施:
■ 高精準(zhǔn)的信號質(zhì)量評估單元:對輸入信號進行量化評估,確保每次測量都是精準(zhǔn)可靠。
■ 生理模型心率估計單元:利用大數(shù)據(jù)技術(shù)和神經(jīng)網(wǎng)絡(luò)對運動強度、運動狀態(tài)以及頻率與心率進行建模,即使在信號質(zhì)量較弱時也能提供準(zhǔn)確的心率估計。
■ 高精度場景識別單元:自動觸發(fā)并精確識別當(dāng)前的運動場景,根據(jù)不同的運動狀態(tài)調(diào)整心率測量的內(nèi)置參數(shù),從而改善心率估計的準(zhǔn)確性。
■ 多通道數(shù)據(jù)融合:支持多路PPG信號的選擇與融合,進一步提升性能。
得益于上述多維度優(yōu)化,心率檢測算法在狀態(tài)轉(zhuǎn)化及頻譜混疊方面展現(xiàn)出顯著的性能改善。以下是改善結(jié)果的示意圖:
圖3. 狀態(tài)轉(zhuǎn)化結(jié)果圖示
圖4. 頻譜重疊結(jié)果圖示
經(jīng)過訓(xùn)練與優(yōu)化的深度學(xué)習(xí)模型應(yīng)用于實際場景中的心率監(jiān)測,包括集成至可穿戴設(shè)備以實現(xiàn)實時心率監(jiān)測與預(yù)警功能,或部署至云端服務(wù)器為用戶提供遠(yuǎn)程心率監(jiān)測與分析服務(wù)。在應(yīng)用過程中,還需持續(xù)收集用戶反饋與數(shù)據(jù),以便對模型進行不斷的改進與優(yōu)化。
總結(jié)
在運動心率檢測方面,芯??萍?/em>CS1262作為一款穿戴式健康測量領(lǐng)域的成熟芯片,憑借高配置性、高精度測量、超強抗干擾能力、低功耗操作、全膚色適配、高可靠性和易用性等優(yōu)勢,以及提供完整的軟件算法集成方案,顯著提升了客戶的終端方案開發(fā)效率,助力產(chǎn)品快速上市。
芯??萍?/em>在健康測量領(lǐng)域始終堅持精益求精,構(gòu)建了從高精度測量芯片到全場景運動心率算法,再到OKOK云端大數(shù)據(jù)平臺的一站式整體解決方案。該方案能夠為用戶提供準(zhǔn)確、實時的心率測量,全面評估健康狀況,帶來專業(yè)、智能的健康管理體驗。目前,該方案已實現(xiàn)了頭部客戶的旗艦終端產(chǎn)品上實現(xiàn)規(guī)?;慨a(chǎn),為智能可穿戴市場帶來更多可能性。
評論