色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 模擬技術(shù) > 設(shè)計應用 > 頻率響應法--奈奎斯特穩(wěn)定判據(jù)

          頻率響應法--奈奎斯特穩(wěn)定判據(jù)

          作者: 時間:2012-03-17 來源:網(wǎng)絡(luò) 收藏
          接用圖5-37所示的奈氏軌線,因為輻角原理只適用于奈氏軌線 不通過 的奇點。為此,可對圖5-37所示的奈氏軌線作些修改,使其沿著半徑為 的半圓繞過虛軸上的所有極點。假設(shè)開環(huán)系統(tǒng)在坐標原點處有其極點,則對應的奈氏途徑要修改為如圖5-40所示。比較圖5-40與圖5-37可以發(fā)現(xiàn),它們的區(qū)別在于圖5-40中多了一個半徑為無窮小的半圓 部分,其余兩者完全相同。因此,只需要研究圖5-40中的 部分在GH平面上的映射。

          設(shè)系統(tǒng)的開環(huán)傳遞函數(shù)

          (5-45)

          部分上,令 ,其中 ,代入上式得

          (5-46)

          當s按逆時針方向沿著 由點a移動到c時,由式(5-46)可求得其在GH平面上的映射曲線:

          對于 的I型系統(tǒng), 部分在GH平面上的映射曲線為一個半徑為無窮大的半圓,如圖5-41a所示。圖中點分別為 半圓上點a、b和c的映射點。

          對于 的Ⅱ型系統(tǒng), 部分在GH平面上的映射曲線是一個半徑為無窮大的半圓,如圖5-41b所示。

          把上述 部分在GH平面上的映射曲線和 的奈氏曲線在 處相連接,就組成了一條封閉曲線。此時,又可應用了。

          例5-6 試判別該系統(tǒng)的穩(wěn)定性。

          反饋控制系統(tǒng)開環(huán)傳函數(shù)為

          試判別該系統(tǒng)的穩(wěn)定性。

          解:由于該系統(tǒng)為I型系統(tǒng),它在坐標原點處有一個開環(huán)極點,因而在s上所取的奈氏軌線應如圖5-40所示。該圖的 部分在GH平面上的映射曲線為一半徑為無窮大的半圓,若將它與圖5-42的奈氏曲線 相連接,則有N=2,而系統(tǒng)的P=0,因而Z=2,即閉環(huán)系統(tǒng)是不穩(wěn)定的,且有兩個閉環(huán)極點位于s的右半平面。

          例5-7 試分析時間常數(shù)的相對大小對系統(tǒng)穩(wěn)定性的影響并畫出它們所對應的奈氏圖。 

          已知系統(tǒng)的開環(huán)傳遞函數(shù)為

          試分析時間常數(shù) 的相對大小對系統(tǒng)穩(wěn)定性的影響,并畫出它們所對應的奈氏圖。

          解 由開環(huán)傳遞函數(shù)得

          根據(jù)以上兩式,作出在 , 三種情況下的 曲線,如圖5-43所示。當 時, 曲線不包圍(-1,j0)點,因而閉環(huán)系統(tǒng)穩(wěn)定的。當 時, 曲線通過(-1,j0)點,說明閉環(huán)極點位于 軸上,相應的系統(tǒng)為不穩(wěn)定的。當



          關(guān)鍵詞: 頻率響應 奈奎斯特 穩(wěn)定判據(jù)

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉