色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 智能變送器的電源的設(shè)計

          智能變送器的電源的設(shè)計

          作者: 時間:2011-05-10 來源:網(wǎng)絡(luò) 收藏

          隨著微控制器MCU(或單片機)技術(shù)的成熟,原來的模擬變送器逐漸被以微控制器為數(shù)據(jù)處理和控制核心的智能變送器所代替。智能變送器擴展了模擬變送器的功能,不僅提高了測量精度和工作可靠性,還可以很容易地實現(xiàn)線性化處理、溫度補償、自動零點和量程調(diào)整及數(shù)字通信等功能。在開發(fā)低功耗的智能兩線制變送器時,儀器內(nèi)部的微功率電源設(shè)計十分關(guān)鍵。首先,具有微處理器的智能變送器要滿足微控制器、A/D、D/A以及通信電路的供電,需要比原來模擬變送器更大的功率,需要內(nèi)部電源具有更高的供電效率。另外,對于電容傳感器和熱電偶,還要考慮接地或者傳感器可能碰殼(接地)的情況,所設(shè)計的變送器電路必須是輸入與輸出相隔離的,這樣才能夠保證后續(xù)控制系統(tǒng)的正常工作和抗共模干擾能力。

          由于外部電路為兩線制變送器系統(tǒng)提供的工作電流最大僅為4mA,這些具體要求給系統(tǒng)電源的設(shè)計帶來了很大的難度和挑戰(zhàn)。我所設(shè)計的這種微輸入功率的隔離式兩線制變送器電源是應(yīng)用在射頻導(dǎo)納物位變送器上的,采用全集成電路設(shè)計,具有結(jié)構(gòu)簡單、性能穩(wěn)定、成本低廉的特點。輸入電壓范圍是16~32VDC,采用降壓變換器方式,輸出兩組互相隔離的5V電源。輸入電壓24VDC,與輸入不隔離的一組最大具有10mA負載能力,與輸入隔離的一組最大具有4mA負載能力,24VDC總線電流小于3.5mA,效率可以達到85%以上,完全滿足輸入與輸出隔離型的兩線制智能變送器對電源的要求。

          整體設(shè)計
          由于智能變送器電源線和信號線復(fù)用,射頻導(dǎo)納物位變送器正常工作時,根據(jù)物位高低輸出4~20mA的電流信號,電路功耗電流不能超過4mA的回路電流,還需要有故障報警功能,總線電流要求為3.6mA,為了生產(chǎn)還需要留出一定的余量,即射頻導(dǎo)納物位變送器本身功耗電流必須小于3.5mA?,F(xiàn)在,簡單估算一下這種變送器的最大功耗,從控制室出來送往變送器的電壓按24V計算,4~20mA DC信號經(jīng)過變送器后先送到配電器中,經(jīng)負載電阻(一般為250Ω)轉(zhuǎn)換成1~5V的直流電壓信號,再送往控制室。理論上變送器內(nèi)部可以消耗的最大功率不應(yīng)超過(24-1)×3.5=80.15mW。這還不包括輸入電路部分的電壓損耗等。圖1為智能變送器組成和對電源要求。

          圖1 智能變送器組成和對電源要求

          目前市面上主要有兩種低電壓電源芯片:線性電源變換器和開關(guān)電源變換器。線性電源變換器基本上不需要外圍元件,成本低,不易受電磁干擾,紋波電壓小,但主要缺點是電源效率低(一般小于40%),尤其應(yīng)用在低輸出電壓的穩(wěn)壓中,效率更低。根據(jù)線性電源的工作原理,其輸出電流接近于輸入電流,而3.5mA的輸出電流根本無法滿足單片機電路和檢測電路的需要,只能采用開關(guān)電源變換器。

          目前市場上能夠應(yīng)用在兩線制智能變送器上的微功耗開關(guān)電源變換器芯片種類并不是很多,并且價格昂貴。為此,我們提出了兩種方案:一種為低成本方案,采用精工電子生產(chǎn)的S-8251B40芯片,采取先把輸入總線電壓降壓到16V方法;另一種采用Linear公司生產(chǎn)的LT1934芯片。

          方案一
          這種方案采用精工電子生產(chǎn)的S-8251B40芯片,成本較低,總體效率也較低,對用電負載電路設(shè)計要求則很高。其輸入為24VDC,與輸入不隔離的一組輸出4.6V,8mA電流,與輸入隔離的一組輸出3.6V,3mA電流,24VDC總線電流小于3.5mA,效率可以達到57%以上。如果以輸入電壓16VDC計算,效率可以達到85%以上。

          S-8520/8521系列是一種由基準電壓源、振蕩電路和誤差等構(gòu)成的PWM控制(S-8520系列)、PWM/PFM切換控制(S-8521系列)CMOS降壓型DC/DC控制器。S-8520系列通過以線性方式在0~100%的范圍內(nèi)改變占空系數(shù)的PWM控制電路和誤差放大電路來獲得低紋波、高效率和良好的過渡響應(yīng)特性。并且,其內(nèi)置了軟啟動電路,以防止啟動上升時發(fā)生上沖。S-8521系列采用PWM/PFM切換控制,在通常時以占空系數(shù)25%~100%的PWM控制來進行工作,在輕負載時,自動地將工作切換為占空系數(shù)25%的PFM控制。從設(shè)備的待機時開始,到工作時為止的寬范圍內(nèi)獲得高效率。通過外接P溝道功率MOSFET或PNP晶體管、線圈、電容器和二極管,可以構(gòu)成降壓型DC/DC控制器,該產(chǎn)品適用于移動設(shè)備的電源。主要指標:輸入電壓為2.5?16V,輸出電壓為1.5?6.0V,可以0.1V為進階單位來進行設(shè)定;低消耗電流工作時:60μA最大值(A、B型產(chǎn)品);休眠時:0.5μA最大值。振蕩頻率典型值為180kHz(A、B型產(chǎn)品);軟啟動功能典型值為8ms(A、B型產(chǎn)品);備有開/關(guān)控制功能。圖2為S-8251基本電路。

          圖2 S-8251基本電路

          在使用S-8251芯片設(shè)計降壓電路時,要注意電感的設(shè)計。電感值(L)對最大輸出電流(IOUT)和效率(η)產(chǎn)生很大的影響。L值越小,峰值電流電路(IPK)就越大,提高了電路穩(wěn)定性并使Iout增大。若使L值變得更小,會降低效率而導(dǎo)致開關(guān)晶體管的電流驅(qū)動能力不足,促使Iout逐漸減少。L值逐漸變大時,開關(guān)晶體管的峰值電流(Ipk)所引起的功耗也隨之變小,達到一定的L值時效率變?yōu)樽畲?。接著,若使L值變得更大,因線圈的串聯(lián)電阻所引起的功耗變大,而導(dǎo)致工作效率的降低,Iout也會減少。S-8520/8521系列產(chǎn)品在L值逐漸變大的過程中,因輸入電壓、輸出電壓以及負載電流的條件的不同,輸出電壓有可能變得不穩(wěn)定。實際調(diào)試電路時,需要進行充分的試驗之后,再決定所選用的L值。二極管需要使用快恢復(fù)或者肖特基二極管。為保證電路的穩(wěn)定,S-8251芯片對輸出電容有著很高的要求,最重要的一點就是它的等效串聯(lián)電阻ESR必須足夠小,同時要有足夠的容量。電路設(shè)計采用了性能優(yōu)良的10μF鉭電解電容器,能夠保證穩(wěn)定的輸出。S-8251芯片是該電路的核心,實際電路線路布局對電路的性能影響非常大,尤其對輸出的紋波有直接影響,不合理的電路板布局設(shè)計會使輸出帶來額外的寄生振蕩,設(shè)計時必須注意。

          因為S-8251芯片輸入電壓范圍是2.5~16V,總線輸入電壓范圍24V,必須先經(jīng)過降壓環(huán)節(jié),這將使變換效率大打折扣。降壓電路靜態(tài)功耗要小于幾十μA量級,否則總線電流很難做到小于3.5mA。我采用MOSFET串聯(lián)降壓方式,基準源沒有采用穩(wěn)壓二極管,而是使用LM385,做到靜態(tài)電流36μA。圖3為24V降壓到16V電路。

          方案二
          這種方案采用Linear公司生產(chǎn)的LT1934芯片,成本較高,總體效率高,對用電負載電路設(shè)計要求不高,有很大的調(diào)整余量。在輸入24VDC時,與輸入不隔離的一組輸出5V,9mA電流,與輸入隔離的一組輸出5V,4mA電流,24VDC總線電流可以輕松做到小于3.5mA,效率可以達到85%以上。

          圖3 24V降壓到16V電路

          LT1934系列芯片是一種由基準電壓源、振蕩電路和誤差等構(gòu)成的、PWM控制的CMOS降壓型DC/DC控制器。主要指標:輸入電壓為3.3?34V,輸出電壓為1.5?6.0V,可以0.1V為進階單位來進行設(shè)定;低靜態(tài)電流12μA最大值,最大輸出電流300mA。圖4為LT1934的基本電路。

          在設(shè)計電路時,器件選擇和S-8251基本一樣,在PCB版圖設(shè)計時要注意電容C2和芯片LT1934距離不能太遠,盡量使用粗線,最好使用地平面,否則會引起自激振蕩。電感L1對DC/DC的轉(zhuǎn)換效率起決定作用。如果L1偏小,電路的轉(zhuǎn)換效率將降低,啟動電流增大,甚至無法啟動。如果L1偏大,則會造成輸出能力下降,同時DC/DC電路將可能產(chǎn)生振蕩。

          隔離電源繞組
          射頻導(dǎo)納物位變送器還需要一組隔離電源給傳感器電路使用。保證變送器的安全工作和高的抗共模干擾能力。我設(shè)計的電源電路在降壓變換器的電感上提供了一個隔離的次級繞組,它采用了在DC/DC輸出儲能電感L1A上“竊”電的方法。圖5為帶隔離電源的電路設(shè)計。

          圖4 LT-1934的基本電路

          L1B就是這個隔離電源的供電線圈。由于這組隔離電源是在DC/DC的儲能線圈上加載的副線圈,結(jié)構(gòu)為開環(huán)形式,因此它的輸出穩(wěn)定性相對比較差。原邊負載的變化直接影響副邊的穩(wěn)定性,因此電路在實際使用時,要求原邊的電路系統(tǒng)在運行時需要盡可能保證功耗的穩(wěn)定性。

          圖5 帶隔離電源的電路設(shè)計

          結(jié)論
          兩線制變送器隔離式電源具有使用溫度范圍寬、輸入電壓范圍寬、輸出效率高、集成度高、隔離性能好、體積小、成本低等特點,是一種穩(wěn)定可靠的兩線制變送器電源,能夠滿足各種具有復(fù)雜要求的兩線制變送器的使用??紤]到尺寸大小和安裝等因素,我們在射頻導(dǎo)納物位變送器上采用第二種方案。目前該電源已經(jīng)在射頻導(dǎo)納物位變送器上獲得應(yīng)用,經(jīng)過長時間的現(xiàn)場應(yīng)用考驗,性能優(yōu)良,完全達到了隔離型兩線制變送器的使用要求。



          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉