色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 模擬技術 > 設計應用 > 開關電源在模擬量采集系統(tǒng)中的應用

          開關電源在模擬量采集系統(tǒng)中的應用

          作者: 時間:2011-03-24 來源:網絡 收藏

          盡管在模擬量采集系統(tǒng)中,對ADC芯片等的供電一般建議最好不用開關電源,以避免其固有的紋波大、噪聲等問題,但開關電源仍以其高效率、低價格等優(yōu)點得到廣泛應用,尤其是在工業(yè)控制等領域。本文介紹開關電源在模擬量采集系統(tǒng)中的應用,并對可能出現(xiàn)的一些問題進行分析。

          開關電源對ADC芯片工作的影響及解決方法

          電源對ADC芯片的影響,除了體現(xiàn)在電源抑制比(PSRR)參數上,還表現(xiàn)在,當ADC芯片對輸入的模擬信號進行采樣、保持、轉換時,電源電壓、參考地的變化,都會對ADC芯片內部采樣電路、比較器等的工作產生影響,使得采集結果出現(xiàn)晃動。因此,一般ADC芯片特別是高精度ADC芯片,都建議最好用質量好的線性電源供電。如果采用開關電源,則需要盡力避免它對ADC芯片產生影響。

          圖1是一個典型的應用,其中模擬采樣用的信號調理電路、ADC和現(xiàn)場模擬信號不隔離,ADC芯片和CPU電源相互隔離。CPU采用控制系統(tǒng)內部電源。而ADC的+5V電源是由+24V電源經過+24V到+5V電源變換而來的。圖中左側部分是典型的串聯(lián)、降壓非隔離型DC-DC變換器的原理框圖。設計中,可以根據開關管的開關頻率、+5V消耗電流、要求的輸出紋波最大值,計算出電感L1、電容C1的合適大小。

          為了分析出開關電源對ADC芯片的影響,這里假設信號調理電路及ADC芯片正常運行的耗電是25mA/+5V,對于光耦部分,如果采用6N136、TLP521等三極管輸出型的光耦,則當CPU不啟動ADC工作時,光耦全不導通,耗電小于1mA;當CPU啟動ADC工作時,將有數據輸出Dout、數據準備好Ready等信號經過光耦,光耦處于導通狀態(tài),為了達到比較高的通訊速率,光耦總耗電需要25mA/+5V左右。這樣,+5V負載電流將在25~50mA之間來回變動。正常開關電源設計的輸出電流應該2倍于最大負載電流,這里設為100mA,下面將要說明負載電流的變化將極大影響+5V,從而影響ADC采樣穩(wěn)定性。

          開關電源的工作原理是,平時Q1的周期性開關動作,再經過L1、C1,得到所需要的輸出;而當輸出+5V電壓發(fā)生上升/下降超過一定限度(如幾十毫伏),經過采樣、反饋后,開關控制電路控制Q1的開關,使得輸出電壓向+5V回歸。在+5V負載比較恒定的情況下,輸出+5V的最大紋波,可以根據采樣反饋電路工作原理(比如MC34063是通過比較器和鎖存器來控制Q1的開關)、開關頻率等計算出來。

          但如果是圖1中帶光耦的情況,開關電源的輸出不僅供給相對恒定的負載(如信號調理電路、ADC芯片),而且還要供給光耦等數字部分電路,有可能發(fā)生最壞的情況是,當開關管Q1正處于上述穩(wěn)定工作中的關斷時刻,光耦突然被ADC導通,此時L1、C1將要提供50mA的負載電流,而平時穩(wěn)定工作中L1只提供25mA的電流,剩下電流只能從電容C1中獲取,使得C1上的電壓即+5V電平下降比較大。這將持續(xù)半個開關周期,直到開關管Q1打開。如果開關電源的開關頻率是100KHz,而ADC芯片數據Dout的通訊頻率也是100KHz左右,將引起輸出+5V電壓頻繁波動,造成更大的輸出紋波。在示波器上甚至能看到噪聲反饋在+24V輸入上。

          上面只是理論分析的最壞情況,實際應用中,濾波電容等器件的非理想性、PCB布線等等,將使得電源紋波更大,ADC采樣結果不穩(wěn)定。有的微功率型隔離DC/DC,或者如電荷泵器件,只有開關管的周期性開關動作,而沒有上述采樣、反饋電路,輸出更容易受到負載不穩(wěn)定的影響,使得ADC采樣結果更不穩(wěn)定。

          圖1:開關電源在模擬量采集系統(tǒng)中的典型應用圖

          比較好的解決辦法

          1.設法降低開關電源的負載變化,因為雖然目前開關電源的工作頻率已到幾百kHz以上,但開關電源的負載響應時間仍至少要幾個μs,低于目前大多ADC采樣的速度。比如采用光耦6N137就比6N136好,因為6N137只是靜態(tài)電流比較大,而它需要的二極管導通電流小,使得電源的負載變化不會很大?;蛘卟话涯M+5V電源接到小功率的開關電源輸出上,而接到其它功率比較大的開關電源輸出上,避免開關電源輸出受到負載變動的影響。同樣一個值得注意的問題是,不要使用ADC芯片的Ready、Dout、Din等引腳直接驅動光耦,最好通過光耦驅動電路,使得模擬和數字電源得到很好地相互隔離,避免在光耦開關時,有大的電流越過ADC芯片。

          2.開關電源后加LDO等輸出電壓紋波小的器件,再供給信號調理電路、ADC芯片,保證電源的穩(wěn)定。

          3.如果在開關電源后加LC濾波,將LC濾波后的電源供給數字部分,此時應該針對不同的負載電流大小,選擇相應的L、C數值,必要的時候,要通過一定的計算、仿真及試驗來加以確定。電感、電容不能過大,否則難以響應負載(光耦開/關)的變化。建議開關電源輸出直接供給數字部分;同時經過LC濾波或者RC濾波,再供給信號調理電路、ADC芯片。在采用LC濾波時,還需要注意LC的諧振頻率要遠遠偏離開關電源工作頻率。比如濾波RC電路的電阻R可以取10Ω左右,電容取10μF左右。

          4.其它常規(guī)的方法也特別重要,如信號調理電路、ADC芯片的電源和地,要同光耦等數字部分的電源和地分開走線,最后單點連接?;蛘邇烧卟捎脙蓚€DC/DC電路分別給ADC芯片等和光耦等數字電路供電。原因和上文分析一樣,也是為了更好的避免數字、模擬之間電源的相互干擾。

          開關電源對運算的影響及解決方法

          一般模擬量信號進入ADC芯片之前,要利用運算進行信號調理,以提供必要的電平變換、濾波、ADC芯片驅動等等。運算與ADC相接口時,容易受到電源的影響,從而也影響ADC芯片采集的穩(wěn)定。圖2是運算放大器與ADC的典型接口圖。

          圖2:運算放大器與ADC的典型接口圖

          大多ADC芯片內部的模擬輸入端都具有一個采樣電容Cin,電阻R1對運放輸出限流,數倍于采樣電容的陶瓷電容C1使得開關SW合上的瞬間,通過C1迅速給采樣電容Cin充電。R1、C1的具體數值,與運放的穩(wěn)定性、建立時間、ADC采樣時間、需要的采樣精度有關。

          這里要指出的是,在上述過程中,運放的電源也會起很大的作用。在運放對電容充電期間,瞬間需要較大的電流,而開關電源的負載響應時間不夠,將造成比較大的電源紋波,影響運放的輸出。比如采用C1=10Cin=250pF,則當SW從別的通道(假設為-5V)切到AI0通道(假設+5V)時,Cin從-5V切換到C1上的電壓+5V,C1迅速給Cin充電,最終電壓為(5V×10-5V)/11=4.09V,運放輸出要從5V變到4.09V,R1太小容易帶來運放輸出穩(wěn)定性問題,同時也會對運放輸出電流帶來沖擊,影響電源電壓。

          特別是在采用電荷泵給運放-VCC提供小的負電源時,電荷泵輸出電壓隨負載增大而降低的特性使得效果更加明顯。比較發(fā)現(xiàn),運放采用直流線性穩(wěn)壓電源時,12位的ADC采集結果很穩(wěn)定,結果變動可達1LSB以下;相比之下,采用電荷泵器件時,如果電荷泵輸出沒有大的濾波,ADC采集結果晃動可達3LSB。如果增大R1為100Ω時,C1=10Cin,不考慮運放輸出電阻時,需要運放輸出電流的最大值為(5-4.09)V/100Ω=9.1mA),小于一般運放的最大輸出電流。但R1太大,將明顯降低ADC所能采集到的信號頻率,在ADC對該通道“跟蹤”期間,運放無法完成對C1和Cin充電,使得該次采樣與運放輸入端電壓相差較大,會造成諧波失真。

          解決辦法除了前文描述的以外,同時還可以采用以下方法:

          1.運放的正負電源對地除并接一個10~22μF大電容以減少電源紋波外,再并接一個0.1~1μF的小陶瓷電容,以通過0.1~1μF高頻去耦電容的作用,避免負載電容的瞬間充電對電源的影響。效果類似于數字芯片電源和地之間加的去耦電容。

          2.增大圖2中ADC前端電阻R1,減小運放的輸出電流,能起到一定的濾波作用。當然R1大的話,將衰減通過運放的信號。

          開關電源對參考源的影響及解決方法

          有的ADC芯片要外部提供參考源,這時外部參考源的供電,也需要參照前文所述的處理方法,采取在輸入端加濾波等措施。同時注意,對連續(xù)


          上一頁 1 2 下一頁

          評論


          相關推薦

          技術專區(qū)

          關閉