新穎高效率開(kāi)關(guān)電源控制器設(shè)計(jì)方案
1 引言
降壓型集成開(kāi)關(guān)電源控制器廣泛應(yīng)用于各類便攜式設(shè)備中。 近年來(lái),隨著電池供電的便攜式設(shè)備,如手機(jī)、MP3 播放器、PDA 等性能的提高和功能的日趨豐富,對(duì)于開(kāi)關(guān)電源的效率提出了越來(lái)越高的要求。
為提高效率和減少片外元器件, 目前應(yīng)用的Buck變換器通常集成了功率開(kāi)關(guān)和同步整流開(kāi)關(guān)。 同時(shí), 為減小片外電感元件的尺寸以適應(yīng)便攜式設(shè)備的應(yīng)用,開(kāi)關(guān)頻率往往設(shè)置為幾兆甚至更高的數(shù)量級(jí)。 由此帶來(lái)的問(wèn)題是,當(dāng)變換器工作在輕載條件下, 開(kāi)關(guān)損耗就變成了主要的功率損耗。 而便攜式設(shè)備恰恰常工作于待機(jī)狀態(tài)即輕載工作狀態(tài)下,輕載效率對(duì)于延長(zhǎng)電池的使用壽命至關(guān)重要。 因此,提高輕載效率的問(wèn)題受到了高度關(guān)注。
解決上述問(wèn)題的一種常見(jiàn)方法是在輕載情況下降低開(kāi)關(guān)頻率,從而使得變換器的效率保持在與重載近似的水平上。 這種技術(shù)有PFM/ PWM 多模式調(diào)制、共柵驅(qū)動(dòng)等,但是它們有一個(gè)共同的缺點(diǎn):開(kāi)關(guān)頻率隨負(fù)載調(diào)制,這使片外濾波器的設(shè)計(jì)變得相當(dāng)復(fù)雜。
本文提出的綠色模式降壓型功率集成開(kāi)關(guān)電源控制器芯片采用了Burst/ PWM 多模式調(diào)制技術(shù),控制變換器在重載下以恒定頻率工作在PWM 模式,而當(dāng)負(fù)載降低到一定程度時(shí),自動(dòng)切換到Burst 模式并以降低的恒定頻率工作。 其主要優(yōu)點(diǎn)是減少了開(kāi)關(guān)損耗, 又不增加片外濾波器的設(shè)計(jì)復(fù)雜度。 此外,Burst 模式還可以根據(jù)應(yīng)用的需要,由用戶控制使能或禁止。 并且在模式轉(zhuǎn)換過(guò)程中,采用雙基準(zhǔn)法實(shí)現(xiàn)模式轉(zhuǎn)換的平滑過(guò)渡和負(fù)載遲滯。 同時(shí),芯片引入片上電流檢測(cè)技術(shù)以取代傳統(tǒng)的電阻電流檢測(cè), 在一定程度上減少了功耗。 功率開(kāi)關(guān)和同步整流開(kāi)關(guān)的集成也簡(jiǎn)化了片外應(yīng)用電路的設(shè)計(jì)。
2 系統(tǒng)設(shè)計(jì)
本文提出的綠色模式降壓型開(kāi)關(guān)電源控制器是一個(gè)恒定頻率工作、峰值電流控制模式的Buck 變換器,輸出電壓經(jīng)由片外分壓電阻反饋調(diào)節(jié),功率開(kāi)關(guān)和同步整流開(kāi)關(guān)均由片上集成。 系統(tǒng)原理如圖1 所示。
圖1 系統(tǒng)原理圖
2. 1 峰值電流PWM控制模式
DC2DC 變換器的控制策略主要有電壓型控制和電流型控制兩種。 與電壓型控制相比,電流型控制策略因具有較好的線性調(diào)整率和較為簡(jiǎn)單的補(bǔ)償電路等優(yōu)點(diǎn)而被廣泛采用。
作者提出的綠色模式Buck 變換器在重載條件下工作時(shí),采用峰值電流PWM 控制策略。 通常,根據(jù)電感電流檢測(cè)方法的不同,電流型控制又可分為平均電流控制、峰值電流控制、模擬電流控制等不同模式,其中峰值電流控制模式因?qū)斎腚妷汉洼敵鲐?fù)載變化的瞬態(tài)響應(yīng)快、具有瞬時(shí)峰值電流限流功能等優(yōu)點(diǎn),應(yīng)用最為廣泛。
峰值電流控制環(huán)路主要由電流環(huán)和電壓環(huán)構(gòu)成。 控制環(huán)路的工作過(guò)程由圖2 所示。 圖中:
V sense = Vin - KIsense (1)
式中 V in是輸入電源電壓;V sense 是電流檢測(cè)模塊檢測(cè)到的電壓信號(hào); Isense是檢測(cè)模塊檢測(cè)到的與電感電流成比例的信號(hào)。 另外,圖2 中的V peak 信號(hào)即為受電壓環(huán)控制的預(yù)期要達(dá)到的與電感電流峰值相對(duì)應(yīng)的電壓信號(hào)。
圖2 峰值電流控制過(guò)程
在每個(gè)周期開(kāi)始時(shí),由時(shí)鐘上升沿置位主RS 觸發(fā)器,功率開(kāi)關(guān)打開(kāi),變換器進(jìn)入充電階段,電感電流上升, Isense 上升而V sense 下降。 當(dāng)電感電流達(dá)到峰值, 即V sense達(dá)到V peak時(shí),電流比較器( Icomp ) 的輸出復(fù)位RS 觸發(fā)器控制功率開(kāi)關(guān)關(guān)斷。 這就是電流環(huán)的工作過(guò)程。 而電感電流的峰值主要由電壓環(huán)控制。 具體地說(shuō),當(dāng)反饋電壓下降到基準(zhǔn)以下時(shí),誤差放大器( EA) 輸出上升,限制電流上升峰值的V peak 電壓隨之下降,于是功率開(kāi)關(guān)的開(kāi)啟占空比增大,輸出電壓上升,反之亦然。 其中反饋電壓是由輸出電壓經(jīng)過(guò)電阻分壓得到的。
在功率開(kāi)關(guān)關(guān)斷的時(shí)間間隔內(nèi), 傳統(tǒng)的降壓型Buck 變換器采用肖特基二極管作為續(xù)流二極管。 因此,當(dāng)肖特基二極管導(dǎo)通時(shí),它的導(dǎo)通壓降(典型值013V)引起的功率損耗將是不可避免的。 為了減少導(dǎo)通損耗,引入了同步整流技術(shù)。 同步整流即采用一個(gè)同步功率開(kāi)關(guān)代替整流二極管。 當(dāng)同步整流開(kāi)關(guān)導(dǎo)通時(shí),導(dǎo)通電阻一般在100mΩ 以下,以1A 負(fù)載為例,此時(shí)的導(dǎo)通損耗近似為011W;而對(duì)于導(dǎo)通電壓為013V 的肖特基二極管,損耗近似為013W. 可見(jiàn)在中小功率的應(yīng)用當(dāng)中,同步整流可以有效地提高開(kāi)關(guān)電源變換器的效率。
由于同步整流開(kāi)關(guān)和肖特基二極管之間工作方式的差異,需同時(shí)引入一些控制電路和保護(hù)電路。
首先,在功率開(kāi)關(guān)和同步整流開(kāi)關(guān)兩個(gè)開(kāi)關(guān)轉(zhuǎn)換的瞬間,必須設(shè)置一個(gè)死區(qū)時(shí)間(anti2shoot2thru) 來(lái)防止兩個(gè)開(kāi)關(guān)同時(shí)導(dǎo)通導(dǎo)致輸入電源短路。 在死區(qū)時(shí)間內(nèi),功率開(kāi)關(guān)和同步整流開(kāi)關(guān)都關(guān)斷,此時(shí)電流由同步整流開(kāi)關(guān)上寄生的二極管續(xù)流,所以在合理范圍內(nèi)死區(qū)時(shí)間越短就越能減少功耗,一般設(shè)計(jì)在 10ns 左右(1MHz 工作頻率下) 。
其次,同步整流開(kāi)關(guān)不像肖特基二極管那樣只能單向?qū)щ姡?dāng)變換器工作在斷續(xù)電流模式下,在下一個(gè)周期開(kāi)始之前,同步整流開(kāi)關(guān)上的電流就已經(jīng)下降到零并反向,此時(shí),電感電流反向相當(dāng)于從負(fù)載抽電流,導(dǎo)致能量的浪費(fèi)以及變換器效率的降低。 因此必須設(shè)計(jì)一個(gè)防止同步整流開(kāi)關(guān)電流反向的檢測(cè)電路( rever se) 來(lái)檢測(cè)電流方向。 本設(shè)計(jì)是利用檢測(cè)SW 點(diǎn)的電壓,當(dāng)電壓從負(fù)變正時(shí),反向電流比較器控制同步整流開(kāi)關(guān)關(guān)斷。
2. 2 Burst 控制模式
在輕載情況下,這個(gè)多模式開(kāi)關(guān)電源控制器還可以控制變換器工作在Burst 模式。 在這種模式下,功率開(kāi)關(guān)根據(jù)負(fù)載情況連續(xù)工作幾個(gè)周期再關(guān)斷幾個(gè)周期,因此可以有效地減少開(kāi)關(guān)損耗和降低靜態(tài)功耗。 對(duì)于便攜式設(shè)備應(yīng)用來(lái)說(shuō),輕載情況下的變換器效率是一項(xiàng)非常重要的指標(biāo),因此Bur st 控制模式必不可少。 Burst 模式的工作過(guò)程如圖3 所示。
圖3 Burst 模式工作過(guò)程
當(dāng)變換器工作在Burst 模式時(shí),電感電流峰值的最小值被控制在150mA 左右,不再隨著負(fù)載的降低而降低,即Vpeak 信號(hào)不再受誤差放大器輸出控制。 Bur st 模式工作狀態(tài)和休眠狀態(tài)(sleep mode) 的切換主要由一個(gè)Bur st 比較器控制。 該比較器是一個(gè)典型的遲滯比較器,它的遲滯窗口直接決定了在Bur st 工作模式下輸出電壓的紋波大小。 輸出電壓的波動(dòng)反饋到Bur st 比較器,當(dāng)反饋電壓超過(guò)比較器上限時(shí),Bur st 比較器輸出會(huì)強(qiáng)制功率開(kāi)關(guān)關(guān)斷幾個(gè)周期,進(jìn)入休眠狀態(tài);反之,當(dāng)反饋電壓低于比較器下限時(shí),Burst 比較器的輸出允許功率開(kāi)關(guān)按正常方式工作。 因此,在工作情況下,功率開(kāi)關(guān)的開(kāi)關(guān)頻率依然是恒定的,而且,在負(fù)載恒定的情況下,休眠狀態(tài)和工作狀態(tài)的交替過(guò)程也是按恒定頻率進(jìn)行的。 每個(gè)Burst 工作過(guò)程視負(fù)載變化而定:在非常輕的負(fù)載下只持續(xù)幾個(gè)周期,而在重載情況下可能持續(xù)多個(gè)周期或者保持連續(xù)工作。 在Bur st 工作周期之間的休眠階段,功率開(kāi)關(guān)和其他一些不必要的電路都被關(guān)斷,從而進(jìn)一步減小靜態(tài)功耗,此時(shí)的負(fù)載電流完全由輸出電容供給。
2. 3 模式轉(zhuǎn)換
在多模式控制的變換器中,由于在輕重載條件下采用不同的控制策略,會(huì)在負(fù)載變化和模式切換的時(shí)候產(chǎn)生一些問(wèn)題:一是當(dāng)負(fù)載電流正好在所設(shè)定的模式切換點(diǎn)附近波動(dòng)時(shí),會(huì)使變換器在兩種工作模式間反復(fù)切換,極容易造成工作狀態(tài)不穩(wěn)定;二是在模式切換的瞬間會(huì)產(chǎn)生較大的過(guò)沖電壓,導(dǎo)致器件損壞。 這是多模式變換器普遍存在的一個(gè)嚴(yán)重缺陷。 針對(duì)這一缺陷,本文提出一種雙基準(zhǔn)解決方案,即對(duì)PWM 模式和Bur st 模式采用不同的基準(zhǔn)電壓,這樣不但可以實(shí)現(xiàn)如前所述的模式切換過(guò)程中的遲滯功能,且可抑制一部分過(guò)沖電壓。 模式切換時(shí)的工作原理如圖4所示。
圖4 模式切換時(shí)的工作原理
在Bur st 工作模式中,控制器控制輸出電壓略高于PWM 工作模式中的輸出電壓,設(shè)計(jì)中,Bur st 下限高于EA 基準(zhǔn)的016 % ,上限高于EA 基準(zhǔn)
評(píng)論