無速度傳感器矢量控制系統(tǒng)在地鐵車輛上的應用
隨著人們對地鐵列車乘坐舒適性的要求越來越高,作為地鐵列車核心組成的牽引系統(tǒng)就必須有越來越高的動態(tài)調(diào)速性能。廣州地鐵 3 號線是國內(nèi)第一條快速( 120 km/h) 運營的地鐵線路,試運營半年多以來其列車優(yōu)良的牽引性能得到了乘客的好評,穩(wěn)定而可靠的牽引系統(tǒng)減少了車輛的維護工作量。本文詳細介紹了該車輛采用的 SITRAC 牽引控制系統(tǒng)的控制結(jié)構(gòu)、算法,并結(jié)合該系統(tǒng)在廣州地鐵 3 號線列車上的實際應用證明了無速度傳感器控制系統(tǒng)的可靠性和穩(wěn)定性。
1 無速度傳感器矢量控制的基本原理
所謂無速度傳感器變頻調(diào)速控制系統(tǒng)就是取消了變壓變頻調(diào)速系統(tǒng)的速度檢測裝置,通過間接計算法求出列車運行中牽引電機的實際轉(zhuǎn)速值作為轉(zhuǎn)速的反饋信號。我們把計算轉(zhuǎn)速實際值的這一模型稱之為轉(zhuǎn)速推算器。它的基本組成原理是: 在電機的定子側(cè)裝設(shè)電壓傳感器和電流傳感器,通過檢測三相電壓 uA,uB,uC 和三相電流 iA,iB,iC。根據(jù) 3/2 變換( 矢量控制中三相軸系到二相軸系的變換) 靜止軸系中的兩相電壓 usα,usβ 及兩相電流isα,isβ,由定子靜止軸系( α- β) 中的兩相電壓、電流可以推算定子磁鏈,估算電機的實際轉(zhuǎn)速。轉(zhuǎn)速推算器的結(jié)構(gòu)如圖 1 所示。 由于轉(zhuǎn)速推算器受轉(zhuǎn)子參數(shù)的影響,因而基于轉(zhuǎn)子磁鏈定向的轉(zhuǎn)速推算器還需要考慮轉(zhuǎn)子參數(shù)的改變。此外,轉(zhuǎn)速推算器的實用性還取決于其精度和快速性。隨著計算機運算性能和運算速度的不斷提高,現(xiàn)代矢量控制方法已經(jīng)能夠非常精確地以高度的動態(tài)性控制感性設(shè)備中的磁通和力矩。同時為了抑制高頻的機械振動,優(yōu)化牽引系統(tǒng)部件的電磁噪聲并能夠獲得盡可能低的可預見的諧波電流,就有必要使用校準并且優(yōu)化過的 IGBT 控制脈沖。西門子公司新推出的牽引控制系統(tǒng) SITRAC 不但滿足了這一尖端的要求,更重要的是實現(xiàn)了無速度傳感器的控制。這一新的控制特點減小了驅(qū)動器的復雜性并且增強了系統(tǒng)的可靠性。SITRAC 的控制特點有:
1) 無速度傳感器運作增強了系統(tǒng)可靠性;
2) 高度動態(tài)性的設(shè)定值有效衰減了電氣和機械影響;
3) 高度的擾動動態(tài)性: 通過抵抗由軌道和電源系統(tǒng)引起的擾動,增強了牽引系統(tǒng)的穩(wěn)定性;
4) 先進的優(yōu)化脈沖模式: 較高的轉(zhuǎn)換利用,限制了對電源系統(tǒng)和機械的反應;
5) 脈沖模式中連續(xù)的交叉點: 高的轉(zhuǎn)換利用率,連續(xù)的無沖擊工作;
6) 自我調(diào)節(jié),自動參數(shù)識別,自動牽引系統(tǒng)自檢: 簡化調(diào)試,改善了診斷和維護;
7) 高級編程語言“Ansi- C”: 獨立硬件;
8) 集成的軟件模擬,較短的開發(fā)時間,完善的軟件設(shè)計增強了軟件的質(zhì)量。
2 系統(tǒng)的控制結(jié)構(gòu)
圖 2 是 SITRAC 無速度傳感器控制系統(tǒng)的框圖。此控制模型圖解了一個完整的逆變器模型,圖中的電機模型是用來為電流控制器計算機械設(shè)備模型的定子電流和磁通空間矢量。電機模型的輸入僅僅是定子電壓空間矢量和估算速度以及同樣是估算值的機械參數(shù)。在這個系統(tǒng)中電機電壓不是由測量得到而是通過逆變器門控信號、直流電壓測量值、電機電流和相關(guān)的 IGBT 參數(shù)重新構(gòu)建。電機速度是通過電流空間矢量測量值和模型定子電流空間矢量進行比較而估算得到。 3 無速度傳感器牽引系統(tǒng)速度估算的策略
在無速度傳感器的牽引系統(tǒng)中,為了識別速度必須建立一個電感設(shè)備的精確模型,這個模型依靠計算所得的定子電壓和估算所得的電機參數(shù)來估算電機磁通和定子電流空間矢量。由于這個電機模型必須準確地用相關(guān)的模塊來描述,因此這個電機的模型參數(shù)也就必須隨著飽和度及定子繞組和轉(zhuǎn)子繞組的溫度變化而得到調(diào)整。在穩(wěn)態(tài)的情況下,定子電流空間矢量測量值和估算值之間的差值能獨立地用來估算電機的參數(shù)。定子頻率接近零時,只是理論上可以估算出穩(wěn)定的速度。實際上,模型參數(shù)和實際系統(tǒng)之間的差值是不可避免的,為了進行速度估計有必要設(shè)一最小定子頻率 fsmin。為了使這一定子頻率 fsmin 最小化,電機模型與實際電機( 見圖 3) 之間的定子阻抗及定子電壓差值必須保持盡可能的小。在低頻情況下,基本的定子電壓空間矢量的幅值相對比較小,所以定子阻抗或逆變器電子管建摸的誤差對速度的估算有很大的影響。 通過各種離線測量,就可以確定逆變器的特性。在低頻情況下定子阻抗必須作為二次側(cè)模型參數(shù)在線進行確定。由于轉(zhuǎn)子阻抗是隨著定子繞組溫度變化的,要估算速度,就必須在線對定子繞組的參數(shù)進行精確測量。
在每一次停站( 速度為零) 時,通過一個短時的測量來進行定子和轉(zhuǎn)子阻抗的識別,這樣就有可能以精確的電機參數(shù)來對列車進行下一次的啟動。這里,定子阻抗的估算是通過勵磁之后( 圖 4 中: 0.2 s
需要注意的是,只有在牽引逆變器工作,如逆變器沒有被封鎖時估算的速度才有效。因此有必要在列車上至少安裝 2 個速度傳感器,目的主要是進行零速檢測( 門釋放功能) 、后溜保護及給司機速度信息。額外增加的這一速度測量確保了在任何牽引逆變器封鎖的情況下列車有高度的冗余和可靠性。 4 低頻時無速度傳感器系統(tǒng)的運行
無速度傳感器的牽引系統(tǒng)也可以工作在低速和列車倒行模式下。在此工作點上逆變器輸出頻率跨越“0”值,控制模式難以辨識感應電機中磁通的方向。圖 5 證實了SITRAC 能夠應付這一嚴酷的工作狀態(tài): 在 2 s 時列車在有坡度的軌道上倒行,通過施加一個合適的向前的牽引力,車輛停住并且頻率在過零時調(diào)整牽引力矩保持頻率為零而沒有不穩(wěn)定的磁通定向,這就可認為計算速度等于測量速度。
5 動態(tài)性能
以下利用 SITRAC 牽引控制系統(tǒng)的優(yōu)良動態(tài)性能對典型測量進行了處理。圖 6 說明了在力矩參考值階躍( 較小階躍: 15% 正常力矩; 較大階躍: 100% 正常力矩) 改變的情況下 SITRAC 的力矩控制品質(zhì); 此外它還說明了即使直流線電壓快速改變,SITRAC 也能夠精確控制力矩,這也是鐵路應用中滿足運行的基本特征。 6 系統(tǒng)實際運行情況
至今,廣州地鐵 3 號線車輛牽引系統(tǒng)在 9 個月的運行中共出現(xiàn) 3 次故障,分析如下:
1) 第一次故障是一塊模擬 / 數(shù)字轉(zhuǎn)換器故障造成逆變器不工作。
2) 第二次故障是一臺逆變器不運轉(zhuǎn)造成了整列車不牽引。廣州地鐵 3 號線每列車共安裝了 2 個電機速度傳感器( A,C 車各一個) ,該信號提供給 ICU( 逆變器控制單元) 作為參考速度。正常情況下,如果在 A 車的逆變器控制單元不能再運轉(zhuǎn)了,來自于動車速度傳感器的相關(guān)信號也會丟失,因此其它的速度傳感器( 來自于 C 車) 應該被使用。但是,出現(xiàn)故障時安裝在列車上的列車控制單元( VCU) 軟件沒有執(zhí)行所描述的以上功能。該問題后來通過修改 VCU 軟件得到了解決。
3) 第三次故障是由于一個速度傳感器出現(xiàn)故障造成,故障時以上第二點描述的 VCU 功能也執(zhí)行了,但由于在此
評論