紅外探測器技術(shù)的發(fā)展
所有物體均發(fā)射與其溫度和特性相關(guān)的熱輻射,環(huán)境溫度附近物體的熱輻射大多位于紅外波段。紅外輻射占據(jù)相當(dāng)寬的電磁波段(0.8μm~1000μm)??芍t外輻射提供了客觀世界的豐富信息,充分利用這些信息是人們追求的目標(biāo)。
將不可見的紅外輻射轉(zhuǎn)換成可測量的信號的器件就是紅外探測器。探測器作為紅外整機系統(tǒng)的核心關(guān)鍵部件,探測、識別和分析紅外信息并加以控制。
熱成像是紅外技術(shù)的一個重要方面,得到了廣泛應(yīng)用,首要的當(dāng)屬軍事應(yīng)用。反之,由于應(yīng)用的驅(qū)使,紅外探測器的研究、開發(fā)乃至生產(chǎn),越來越受重視而得以長足發(fā)展。
1800年Herschel 發(fā)現(xiàn)太陽光譜中的紅外線用的涂黑水銀溫度計為最早的紅外探測器,此后,尤其是二次大戰(zhàn)以來,不斷出現(xiàn)新器件?,F(xiàn)代科學(xué)技術(shù)的進展提供紅外探測器研制的廣闊天地,高性能新型探測器層出不窮。今天的探測器制備已成為涉及物理、材料等基礎(chǔ)科學(xué)和光、機、微電子和計算機等多領(lǐng)域的綜合科學(xué)技術(shù)。
2、物理學(xué)的進展是紅外探測器的基礎(chǔ)
紅外輻射與物質(zhì)(材料)相互作用產(chǎn)生各種效應(yīng)。100多年來,從經(jīng)典物理到20世紀(jì)開創(chuàng)的近代物理,特別是量子力學(xué)、半導(dǎo)體物理等學(xué)科的創(chuàng)立,到現(xiàn)代的介觀物理、低維結(jié)構(gòu)物理等等,有許多而且越來越多可用于紅外探測的物理現(xiàn)象和效應(yīng)。
2.1熱探測器
熱輻射引起材料溫度變化產(chǎn)生可度量的輸出。有多種熱效應(yīng)可用于紅外探測器。
?。?)熱脹冷縮效應(yīng)的液態(tài)的水銀溫度計、氣態(tài)的高萊池(Golay cell);
?。?)溫差電(Seebeck)效應(yīng)??勺龀蔁犭娕己蜔犭姸眩饕糜跍y量儀器。
?。?)共振頻率對溫度的敏感可制作石英共振器非致冷紅外成像陣列。
?。?)材料的電阻或介電常數(shù)的熱敏效應(yīng)--輻射引起溫升改變材料電阻用以探測熱輻射- 測輻射熱計(Bolometer):半導(dǎo)體有高的溫度系數(shù)而應(yīng)用最多,常稱 “ 熱敏電阻”。利用轉(zhuǎn)變溫度附近電阻巨變的超導(dǎo)探測器引起重視。如果室溫度超導(dǎo)成為現(xiàn)實,將是21世紀(jì)最引人注目的探測器。
?。?)熱釋電效應(yīng):快速溫度變化使晶體自發(fā)極化強度改變,表面電荷發(fā)生變化,可作成熱釋電探測器。 熱探測器一般不需致冷( 超導(dǎo)除外 )而易于使用、維護,可靠性好;光譜響應(yīng)與波長無關(guān),為無選擇性探測器;制備工藝相對簡易,成本較低。但靈敏度低,響應(yīng)速度慢。熱探測器性能限制的主要因素是熱絕緣的設(shè)計問題。
2.2光電探測器
紅外輻射光子在半導(dǎo)體材料中激發(fā)非平衡載流子(電子或空穴),引起電學(xué)性能變化。因為載流子不逸出體外,所以稱內(nèi)光電效應(yīng)。量子光電效應(yīng)靈敏度高,響應(yīng)速度比熱探測器快得多,是選擇性探測器。為了達到最佳性能,一般都需要在低溫下工作。光電探測器可分為:
(1)光導(dǎo)型:又稱光敏電阻。入射光子激發(fā)均勻半導(dǎo)體中的價帶電子越過禁帶進入導(dǎo)帶并在價帶留下空穴,引起電導(dǎo)增加,為本征光電導(dǎo)。從禁帶中的雜質(zhì)能級也可激發(fā)光生載流子進入導(dǎo)帶或價帶,為雜質(zhì)光電導(dǎo)。截止波長由雜質(zhì)電離能決定。量子效率低于本征光導(dǎo),而且要求更低的工作溫度。
半導(dǎo)體制冷相關(guān)文章:半導(dǎo)體制冷原理
紅外熱像儀相關(guān)文章:紅外熱像儀原理
評論