電力工業(yè)中高壓開關(guān)柜隔離觸頭溫度監(jiān)測研究
可以看出在開關(guān)柜觸頭接觸正常、溫度變化穩(wěn)定后各個觸頭的實際溫升值DTC 與對應(yīng)的傳感器溫升值DTS之間的比例關(guān)系都在1.43 附近,取其平均值作為試驗結(jié)果,可建立觸頭的實際溫度與傳感器的測量溫度間的數(shù)學關(guān)系式為
TC="K"(TS-T)+T (3)
式中 K="1".43;TS為光纖光柵溫度傳感器測量的溫度值;T為高壓開關(guān)柜環(huán)境溫度。
3.4 系統(tǒng)的抗電磁干擾性分析
為
了檢驗光纖光柵傳感系統(tǒng)的抗電磁干擾能力,在高壓開關(guān)柜滿負荷工作,并且傳感器測量趨于穩(wěn)定的情況下,通過對開關(guān)柜采用突然掉電的方式來檢測溫度測量結(jié)果與電磁場的關(guān)系[15-16],實現(xiàn)抗電磁干擾能力的實驗。圖4 是在觸頭溫升趨于穩(wěn)定后,在試驗過程中安排了兩次停電并在一次側(cè)的B 相觸頭上測量的溫度數(shù)據(jù),圖4(a)是電流的變化過程圖,圖4(b)是電流變化引起的觸頭溫度變化曲線??梢娫谀妇€失去電流的情況下,引起了觸頭溫度的下降,但在恢復送電后又很快開始上升。從曲線可以看出測量的觸頭溫度對突然的停電與送電做出了反應(yīng),但這種溫度的升降是漸變的而不是突變的,說明電磁場的存在對傳輸光纖以及光纖光柵溫度傳感器沒有影響。如果電磁場的存在使測溫系統(tǒng)顯示的溫度較實際溫度偏高或偏低,那么當開關(guān)柜母線中一旦失去電流,電磁場消失時,溫度顯示會立即跳變到“實際值”,但這種跳變現(xiàn)象在實際試驗中并未發(fā)生。因此說明光纖光柵觸頭測溫系統(tǒng)具有很強的抗電磁干擾能力。
4 實驗結(jié)果
本光纖光柵觸頭溫度測量系統(tǒng)在變電站10kV高壓開關(guān)柜上進行了成功試用,圖5 是在高壓開關(guān)柜工作在70%的額定負荷范圍時對一次側(cè)B相觸頭在24 小時的溫度監(jiān)測記錄,它反應(yīng)了全天觸頭溫度的變化過程。從圖中可以看出,從午夜0點到早晨6 點之間觸頭的溫度最低,這一方面是由于用電負荷較小,另一方面與氣溫較低有關(guān);從早晨6 點開始隨著用電負荷的增大,觸頭的溫度也開始升高,到9點用電負荷趨于穩(wěn)定,但由于氣溫的逐漸升高觸頭溫度也開始上升,到14 點時溫度達到最高;從14點到18點之間由于氣溫的降低,觸頭的溫度也逐漸變?。煌瑫r從18 點后,由于用電負荷的增大,觸頭溫度又開始上升,到22 點時達到最高;此后隨著用電負荷的減小,觸頭溫度也逐漸降低。通過對24小時觸頭溫度的記錄分析可以看出,光纖光柵觸頭溫度測量系統(tǒng)能夠正常工作,其記錄數(shù)據(jù)正確反應(yīng)了觸頭溫度與開關(guān)柜的工作負荷和周圍空氣溫度之間的變化關(guān)系,說明了光纖光柵觸頭溫度測量系統(tǒng)的方案是可行的。
5 結(jié)論
本文利用光纖光柵傳感器的體積小、抗電磁干擾能力強、絕緣性好等優(yōu)點,代替電子類傳感器實現(xiàn)了對高壓開關(guān)柜隔離觸頭的溫度監(jiān)測,此方案不需要復雜的絕緣設(shè)計,因此具有簡單、可靠的優(yōu)點。此方案中,解決了光纖光柵溫度傳感器的應(yīng)變交叉敏感影響,在光路的復用上采用了空分復用加波分復用的方案,提高了系統(tǒng)的可靠性和實時性。此系統(tǒng)在10kV 高壓開關(guān)柜上進行了測試,系統(tǒng)能夠正常運行,說明本方案是可行的。
評論