一種于FPGA的高速導(dǎo)航解算系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
摘要:針對(duì)現(xiàn)有小型無人機(jī)導(dǎo)航系統(tǒng)的解算速度慢、多處理器核心臃腫可靠性差的缺點(diǎn),實(shí)現(xiàn)了一種僅使用單一FPGA作為數(shù)據(jù)處理核心的小型高速導(dǎo)航解算系統(tǒng)。該系統(tǒng)對(duì)飛機(jī)運(yùn)動(dòng)方程組和導(dǎo)航方程組進(jìn)行并行化分解,對(duì)相互獨(dú)立的中間變量進(jìn)行并行計(jì)算,使得單個(gè)運(yùn)算周期能夠同時(shí)進(jìn)行6次浮點(diǎn)運(yùn)算,在不盲目增加硬件消耗的條件下有效提高了解算速度。仿真和實(shí)驗(yàn)結(jié)果表明系統(tǒng)能夠高效地進(jìn)行導(dǎo)航信息解算,在小型無人機(jī)的導(dǎo)航控制領(lǐng)域有重要的工程應(yīng)用價(jià)值。
本文引用地址:http://cafeforensic.com/article/256592.htm導(dǎo)航解算是小型無人機(jī)導(dǎo)航控制的基礎(chǔ),小型無人機(jī)機(jī)動(dòng)性強(qiáng),為了完成自主導(dǎo)航任務(wù),必須快速獲得姿態(tài)和位置信息,如果導(dǎo)航信息無法得到高速解算,導(dǎo)航控制系統(tǒng)會(huì)因?yàn)椴荒芗皶r(shí)得到載體正確位置信息而發(fā)出錯(cuò)誤指令,會(huì)對(duì)運(yùn)載體以及人員造成極大危險(xiǎn)。平臺(tái)式慣導(dǎo)系統(tǒng)雖然精度高、實(shí)時(shí)性好,但是龐大的體積和昂貴的造價(jià)不適用于小型無人機(jī)的發(fā)展,GPS等衛(wèi)星導(dǎo)航設(shè)備雖然價(jià)格低廉、體積小巧,但是其衛(wèi)星信號(hào)會(huì)受到建筑物和天氣等因素的干擾。目前國內(nèi)外應(yīng)用于無人機(jī)上的低成本小型化的導(dǎo)航解算系統(tǒng)研究方面大多使用基于DSP、ARM為主處理器的嵌入式系統(tǒng),或者另外添加一顆協(xié)處理器幫助進(jìn)行傳感器數(shù)據(jù)的采集,這樣的系統(tǒng)要么解算速度慢,通信效率低,要么系統(tǒng)臃腫,可靠性差。現(xiàn)場(chǎng)可編程門陣列(FPGA)直接使用硬件描述語言進(jìn)行編程,與ARM和DSP器件相比,可以獲得更有效率的數(shù)據(jù)處理速度,可以兼容各種格式和長(zhǎng)度的數(shù)據(jù),同時(shí)集成了常用IP核,使之可以靈活的用來進(jìn)行系統(tǒng)設(shè)計(jì)。在單片FPGA芯片上實(shí)現(xiàn)導(dǎo)航信息的高速解算,將會(huì)有廣闊的發(fā)展空間。
針對(duì)現(xiàn)有小型無人機(jī)導(dǎo)航解算系統(tǒng)解算速度慢、多處理器臃腫可靠性差的缺點(diǎn),文中設(shè)計(jì)了一種在單片F(xiàn)PGA芯片上實(shí)現(xiàn)數(shù)據(jù)傳輸、姿態(tài)解算和位置解算等功能的導(dǎo)航解算系統(tǒng),節(jié)省了小型無人機(jī)寶貴的空間和成本,提出了一種導(dǎo)航信息的FPGA并行解算方法,充分發(fā)揮FPGA的并行數(shù)據(jù)處理能力提高解算速度,一次導(dǎo)航解算過程只需20微秒。
1 系統(tǒng)結(jié)構(gòu)
系統(tǒng)結(jié)構(gòu)如圖1所示,由單片F(xiàn)PGA芯片作為數(shù)據(jù)處理的核心,型號(hào)為EP2C35F484C6N,其與一個(gè)型號(hào)為NAV440的慣性測(cè)量單元(IMU)進(jìn)行串口通信接收所需的三軸加速度、三軸角加速度等信息,F(xiàn)PGA依次由數(shù)據(jù)接收模塊、數(shù)據(jù)預(yù)處理模塊、姿態(tài)解算模塊、位置解算模塊對(duì)數(shù)據(jù)進(jìn)行處理,最后將數(shù)據(jù)封包發(fā)出,上位機(jī)保存數(shù)據(jù)。
2 導(dǎo)航解算模塊的FPGA設(shè)計(jì)
2.1 數(shù)據(jù)的接收和預(yù)處理
慣性測(cè)量單元發(fā)出的數(shù)據(jù)是有符號(hào)位整型的十六位數(shù)據(jù)包,分頻一個(gè)十六倍于波特率的采樣時(shí)鐘對(duì)串口數(shù)據(jù)進(jìn)行采樣。由于50 MHz的系統(tǒng)時(shí)鐘不能分頻得到正好十六倍于57 600 Hz,需要實(shí)時(shí)進(jìn)行相位差的同步。定義一個(gè)case結(jié)構(gòu)的語句,第七個(gè)采樣時(shí)鐘周期對(duì)串口數(shù)據(jù)進(jìn)行采樣,同時(shí)定義一個(gè)寄存器,檢測(cè)到串口數(shù)據(jù)的上升沿或者下降沿時(shí)產(chǎn)生時(shí)鐘同步標(biāo)志位,這樣就解決了數(shù)據(jù)穩(wěn)態(tài)和時(shí)鐘相位同步的問題。接收到的串行數(shù)據(jù)從低到高位按位依次存放到8位緩沖寄存器的第0到第7位,這樣就完成了串行數(shù)據(jù)接收。FPGA的據(jù)接收模塊對(duì)兩個(gè)8位數(shù)據(jù)拼接后得到的數(shù)據(jù)是16位有符號(hào)整型數(shù)據(jù),數(shù)據(jù)預(yù)處理模塊對(duì)需要其進(jìn)行單精度浮點(diǎn)型的格式轉(zhuǎn)換,然后進(jìn)行單位標(biāo)定。其中16位有符號(hào)整型數(shù)據(jù)向單精度浮點(diǎn)型數(shù)據(jù)格式轉(zhuǎn)換的步驟如下:
步驟1:判斷整型數(shù)據(jù)的最高位即符號(hào)位,記錄符號(hào)位并轉(zhuǎn)換成補(bǔ)碼形式;
步驟2:接著將上述補(bǔ)碼形式左移位,直到第14位為1,并記錄下左移位數(shù),階碼即等于14減去左移的位數(shù);
步驟3:將上述移位后的16位數(shù)據(jù)再左移2位即浮點(diǎn)數(shù)的尾數(shù)的整數(shù)部分,直接賦值給浮點(diǎn)數(shù)的第7到22位,由于整型數(shù)據(jù)小數(shù)點(diǎn)右邊全是零,所以浮點(diǎn)數(shù)的第0到6位也是0,浮點(diǎn)數(shù)的第23到30位即階碼加上127的偏移量,第31位為符號(hào)位與整型數(shù)據(jù)的最高位相同。
2.2 歐拉法姿態(tài)并行解算模塊的FPGA設(shè)計(jì)
FPGA芯片擁有良好的并行運(yùn)算能力,不同程序塊可以相對(duì)獨(dú)立的進(jìn)行運(yùn)算,只要對(duì)算式進(jìn)行合理的并行化分解,就能夠提高運(yùn)算速度。并行計(jì)算的程序塊越多,數(shù)據(jù)處理的速度越快,消耗的硬件資源也越多。飛機(jī)運(yùn)動(dòng)方程如式(1)所示。
相互不影響的中間變量可以同時(shí)計(jì)算,依此對(duì)式(Ⅱ)進(jìn)行并行化分解。分析其計(jì)算過程,一次加減法或者乘除法通常是兩個(gè)三角函數(shù)值之間的運(yùn)算,乘法運(yùn)算較多,除法運(yùn)算只有一次,而每?jī)纱纬顺ㄟ\(yùn)算才進(jìn)行一次加減法運(yùn)算。基于上述分析和硬件資源消耗的考慮,通過3個(gè)乘法運(yùn)算模塊、1個(gè)除法運(yùn)算模塊、2個(gè)加減法運(yùn)算模塊和2個(gè)正余弦函數(shù)運(yùn)算模塊對(duì)姿態(tài)角進(jìn)行解算。FPGA每一個(gè)計(jì)算周期最多同時(shí)調(diào)用6個(gè)運(yùn)算模塊對(duì)數(shù)據(jù)進(jìn)行并行處理,不同計(jì)算周期所計(jì)算的算子安排如下所示:
2.3 位置信息并行解算的FPGA設(shè)計(jì)
通過傳感器獲得的加速度以及上述模塊解算的姿態(tài)角可以解算飛機(jī)三軸速度,飛機(jī)速度解算方程如式(2)所示。
依據(jù)上述并行計(jì)算結(jié)構(gòu)進(jìn)行硬件描述語言的編程和編譯,導(dǎo)航解算系統(tǒng)所占用的FPCA硬件資源如表1所示。
fpga相關(guān)文章:fpga是什么
可控硅相關(guān)文章:可控硅工作原理
比較器相關(guān)文章:比較器工作原理
評(píng)論