色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 電源與新能源 > 設計應用 > 一種基于HCPL-316J的IGBT驅動電路設計

          一種基于HCPL-316J的IGBT驅動電路設計

          作者:樊明龍 鄭桂標 時間:2015-08-06 來源:電子產品世界 收藏
          編者按:在較復雜的變流系統(tǒng)中,主控系統(tǒng)的延滯會影響IGBT模塊故障保護的時效性,造成保護失敗。針對這種情況,本文采用光耦驅動芯片HCPL-316J和DSP芯片設計了一種IGBT驅動電路,當光耦芯片故障信號發(fā)出后立即封鎖IGBT驅動信號,完全消除了主控程序運行時長對故障保護的影響。通過模擬過流實驗和實際應用表明,本設計故障保護響應迅速,運行穩(wěn)定可靠。

          摘要:在較復雜的變流系統(tǒng)中,主控系統(tǒng)的延滯會影響IGBT模塊的時效性,造成保護失敗。針對這種情況,本文采用光耦驅動芯片和DSP芯片設計了一種,當光耦芯片故障信號發(fā)出后立即封鎖IGBT驅動信號,完全消除了主控程序運行時長對的影響。通過模擬過流實驗和實際應用表明,本設計響應迅速,運行穩(wěn)定可靠。

          本文引用地址:http://cafeforensic.com/article/277713.htm

          引言

            光耦驅動芯片是Agilent公司[編者注:2014年8月更名為keysight(是德)公司]生產的柵極驅動電路產品之一,可用于驅動150A/1200V的IGBT,開關速度為0.5μs,有過流檢測和欠電壓封鎖輸出。當過電流發(fā)生時,能輸出故障信號(供保護用),并使IGBT軟關斷[1]。近年來,的應用研究得到了重視,從目前公開發(fā)表的文獻來看,研究主要側重于輸出電路部分,重點是過流軟關斷的原理、工作過程和實用電路設計,對故障信號反饋端和控制信號輸入端的應用研究不多。在文獻[2-7]中均提到將故障信號反饋給主控芯片,但沒有深入的研究如何充分利用該信號端提高驅動電路的整體性能。

            光耦HCPL-316J的過流保護具有自鎖功能,并可設定保護盲區(qū),能有效防止IGBT在工作中瞬時過流而使保護誤動作[7]。當過流是由故障引起的,驅動電路將故障信號反饋給主控DSP,主控芯片接收到故障信號后,封鎖系統(tǒng)中所有驅動芯片的控制信號,實現故障保護。但在實際應用過程中,某些系統(tǒng)的主控程序復雜,運行時間長,造成故障信號發(fā)出后,系統(tǒng)不能及時封鎖所有IGBT的驅動電路,部分IGBT模塊仍然強行工作,引發(fā)嚴重的后果。

            本文針對上述問題設計了一種,不僅具備可靠的過流軟關斷功能,而且故障保護響應及時,不受主控程序運行時間延滯的影響。

          1 應用電路設計

          1.1 設計思路

            HCPL-316J有Vin+、Vin-兩個控制信號輸入端。常見的應用思路是將PWM信號從其中一個輸入端引入,另一個輸入端的電平始終保持不變,如圖1 所示。這樣,只要主控芯片有PWM信號輸出,HCPL-316J就能驅動IGBT工作。這種應用方式實際上是在兩個輸入端中選擇一個使用,另一個端子的功能沒有得到充分的利用。

            本文設計的,PWM信號從Vin- 輸入,Vin+ 輸入端與HCPL-316J的故障報警反饋端相連,如圖2所示。HCPL-316J的故障報警是低電平有效,正常工作時,故障報警輸出端是高電平,Vin+ 端也是高電平,PWM信號能從Vin-輸入到HCPL-316J內部。當HCPL-316J檢測到故障時,故障報警反饋端輸出低電平,Vin+ 端電平被拉抵,PWM信號不能從Vin-輸入到HCPL-316J內部。

          1.2 應用電路實現

            圖3為IGBT驅動電路原理圖,圖中兩個光耦芯片各自驅動一個IGBT模塊,當有更多個光耦芯片時,參照此圖進行連接。以其中的HCPL-316J(1)芯片為例,其輸出電路主要分為以下三個部分:R3、R4、R5、Q1、Q2組成的柵極推挽驅動電路;R2、D2組成的過流檢測電路;D3、C2、C3、C4組成的保護電路。輸出電路主要用于實現對IGBT的推挽驅動和過流檢測,相關原理和應用在文獻[2-7]中已有詳細介紹,這里不再贅述。

            原理圖中的PWM控制信號由主控芯片DSP生成,從光耦的Vin-端輸入,同時,所有光耦使用同一個復位信號RESET。每個光耦的故障信號輸出反饋端接一個鉗位二極管(如圖3中的D1、D4),鉗位二極管陰極接光耦輸出端,所有鉗位二極管的陽極連接成一點,作為驅動模塊總故障信號FAULT。FAULT信號線又連接到所有光耦的Vin+端,同時經限流電路R1接+5V電源。系統(tǒng)正常工作時,光耦的Vin+端和FAULT信號線均呈現高電平,鉗位二極管處于截止狀態(tài),PWM控制信號從Vin-端輸入到光耦內部,光耦在DSP的控制下驅動IGBT工作。

            當某一個光耦芯片檢測到故障時,其故障輸出反饋端呈現低電平,端子上的鉗位二極管導通,總故障信號FAULT變低,向主控芯片發(fā)出故障報警信號,同時所有光耦芯片的Vin+端被鉗定在低電平,Vin-端子上的PWM信號無法輸入到光耦內部,在第一時間封鎖所有光耦的輸入,IGBT失去驅動信號而停止工作,實現了對IGBT模塊的故障快速保護功能。顯然,在主控芯片封鎖PWM控制信號之前,驅動電路已經阻止PWM信號的輸入,這樣就解決了主控程序運行時長對故障保護時效性的影響。

          2 實驗

            實驗電路中主控DSP選用的是TMS320F2812,IGBT選用FS100R12KT3模塊,推挽電路中的NPN管選用MJD44H11G,PNP管選用MJD45H11G,其它元件參數配置如下:R1=R2=R6=10kΩ,R3=R4=R5=R7=R8=R9=10Ω,C1=C5=330pF,C2=C3=C6=C7=0.1μF,C4=C8=100pF。

            為驗證過流保護的時效應,在HCPL-316J(1)芯片DESAT端突加一個電壓信號,模擬系統(tǒng)過流故障狀態(tài),在4通道示波器DSOX2004A上觀察到的實驗波形如圖4所示。當VDESAT1>7V時,HCPL-316J(1)芯片進入過流軟關斷的工作過程,將自身驅動的IGBT(1)軟關斷,同時發(fā)出故障報警信號, VFAULT信號由高變低。一旦VFAULT變?yōu)榈碗娖?,HCPL-316J(2)芯片的輸出VGE2電壓信號立即下降為零,第一時間關斷IGBT(2),實現故障快速保護,而主控DSP在經過2μs后才封鎖控制信號PWM2。

          3 結論

            本文設計的基于HCPL-316J的IGBT驅動電路重點在于對HCPL-316J的信號輸入端Vin+、Vin-和故障信號反饋端FAULT的應用研究,實驗結果表明本設計能充分保證故障保護的快速性,尤其適用于控制系統(tǒng)復雜,主控程序運行時間較長的場所。

            本驅動電路已成功應用于儲能變流器中蓄電池逆變電源系統(tǒng),無故障時逆變模塊能穩(wěn)定連續(xù)運行,過流故障時能快速實現保護,大大降低了逆變模塊關鍵元器件損壞的機率。

          參考文獻:

            [1]陳國呈.新型電力電子變換技術[M].北京:中國電力出版社,2004

            [2]鄭飛,費樹岷,周杏鵬.基于DSP和FPGA的光伏并網控制器設計與實現[J].電力自動化設備,2011,31(2):84-89

            [3]蘇偉,鐘玉林,劉均,等.基于HCPL-316J的IGBT過流保護研究[J].電工電能新技術.2014,33(4):67-70

            [4]Nie Hui,Wei Xueye,Yuan Lei.An improved circuit based on EXB841 applicable to IGBT induction heating power[A]. International Conference on Computer,Mechatronics, Control and Electronic Engineering[C].2010:535-537

            [5]白鑫,張莉,李琛.超級電容器恒功率放電系統(tǒng)中IGBT驅動的設計[J].電測與儀表.2010,47(9):73-76

            [6]潘江洪,蘇建微,杜雪芳.IGBT高壓大功率驅動和保護電路的應用研究[J].電源技術應用.2005,8(11):51-55

            [7]劉偉明,朱忠尼.光耦合器HCPL-316J在IGBT驅動電路中的應用[J].空軍雷達學院學報.2008,22(2):110-112

          光耦相關文章:光耦原理


          電路相關文章:電路分析基礎


          pwm相關文章:pwm是什么


          交換機相關文章:交換機工作原理


          超級電容器相關文章:超級電容器原理




          評論


          相關推薦

          技術專區(qū)

          關閉