功率場(chǎng)效應(yīng)晶體管(MOSFET)原理
功率場(chǎng)效應(yīng)管(Power MOSFET)也叫電力場(chǎng)效應(yīng)晶體管,是一種單極型的電壓控制器件,不但有自關(guān)斷能力,而且有驅(qū)動(dòng)功率小,開關(guān)速度高、無二次擊穿、安全工作區(qū)寬等特點(diǎn)。由于其易于驅(qū)動(dòng)和開關(guān)頻率可高達(dá)500kHz,特別適于高頻化電力電子裝置,如應(yīng)用于DC/DC變換、開關(guān)電源、便攜式電子設(shè)備、航空航天以及汽車等電子電器設(shè)備中。但因?yàn)槠潆娏?、熱容量小,耐壓低,一般只適用于小功率電力電子裝置。
一、電力場(chǎng)效應(yīng)管的結(jié)構(gòu)和工作原理
電力場(chǎng)效應(yīng)晶體管種類和結(jié)構(gòu)有許多種,按導(dǎo)電溝道可分為P溝道和N溝道,同時(shí)又有耗盡型和增強(qiáng)型之分。在電力電子裝置中,主要應(yīng)用N溝道增強(qiáng)型。
電力場(chǎng)效應(yīng)晶體管導(dǎo)電機(jī)理與小功率絕緣柵MOS管相同,但結(jié)構(gòu)有很大區(qū)別。小功率絕緣柵MOS管是一次擴(kuò)散形成的器件,導(dǎo)電溝道平行于芯片表面,橫向?qū)щ?。電力?chǎng)效應(yīng)晶體管大多采用垂直導(dǎo)電結(jié)構(gòu),提高了器件的耐電壓和耐電流的能力。按垂直導(dǎo)電結(jié)構(gòu)的不同,又可分為2種:V形槽VVMOSFET和雙擴(kuò)散VDMOSFET。
電力場(chǎng)效應(yīng)晶體管采用多單元集成結(jié)構(gòu),一個(gè)器件由成千上萬個(gè)小的MOSFET組成。N溝道增強(qiáng)型雙擴(kuò)散電力場(chǎng)效應(yīng)晶體管一個(gè)單元的部面圖,如圖1(a)所示。電氣符號(hào),如圖1(b)所示。
電力場(chǎng)效應(yīng)晶體管有3個(gè)端子:漏極D、源極S和柵極G。當(dāng)漏極接電源正,源極接電源負(fù)時(shí),柵極和源極之間電壓為0,溝道不導(dǎo)電,管子處于截止。如果在柵極和源極之間加一正向電壓UGS,并且使UGS大于或等于管子的開啟電壓UT,則管子開通,在漏、源極間流過電流ID。UGS超過UT越大,導(dǎo)電能力越強(qiáng),漏極電流越大。
二、電力場(chǎng)效應(yīng)管的靜態(tài)特性和主要參數(shù)
Power MOSFET靜態(tài)特性主要指輸出特性和轉(zhuǎn)移特性,與靜態(tài)特性對(duì)應(yīng)的主要參數(shù)有漏極擊穿電壓、漏極額定電壓、漏極額定電流和柵極開啟電壓等。{{分頁}}
1、 靜態(tài)特性
(1) 輸出特性
輸出特性即是漏極的伏安特性。特性曲線,如圖2(b)所示。由圖所見,輸出特性分為截止、飽和與非飽和3個(gè)區(qū)域。這里飽和、非飽和的概念與GTR不同。飽和是指漏極電流ID不隨漏源電壓UDS的增加而增加,也就是基本保持不變;非飽和是指地UCS一定時(shí),ID隨UDS增加呈線性關(guān)系變化。
(2) 轉(zhuǎn)移特性
轉(zhuǎn)移特性表示漏極電流ID與柵源之間電壓UGS的轉(zhuǎn)移特性關(guān)系曲線,如圖2(a)所示。轉(zhuǎn)移特性可表示出器件的放大能力,并且是與GTR中的電流增益β相似。由于Power MOSFET是壓控器件,因此用跨導(dǎo)這一參數(shù)來表示。跨導(dǎo)定義為
(1)
圖中UT為開啟電壓,只有當(dāng)UGS=UT時(shí)才會(huì)出現(xiàn)導(dǎo)電溝道,產(chǎn)生漏極電流ID。
2、 主要參數(shù)
(1) 漏極擊穿電壓BUD
BUD是不使器件擊穿的極限參數(shù),它大于漏極電壓額定值。BUD隨結(jié)溫的升高而升高,這點(diǎn)正好與GTR和GTO相反。
(2) 漏極額定電壓UD
UD是器件的標(biāo)稱額定值。
(3) 漏極電流ID和IDM
ID是漏極直流電流的額定參數(shù);IDM是漏極脈沖電流幅值。
(4) 柵極開啟電壓UT
UT又稱閥值電壓,是開通Power MOSFET的柵-源電壓,它為轉(zhuǎn)移特性的特性曲線與橫軸的交點(diǎn)。施加的柵源電壓不能太大,否則將擊穿器件。
(5) 跨導(dǎo)gm
gm是表征Power MOSFET 柵極控制能力的參數(shù)。{{分頁}}
三、電力場(chǎng)效應(yīng)管的動(dòng)態(tài)特性和主要參數(shù)
1、 動(dòng)態(tài)特性
動(dòng)態(tài)特性主要描述輸入量與輸出量之間的時(shí)間關(guān)系,它影響器件的開關(guān)過程。由于該器件為單極型,靠多數(shù)載流子導(dǎo)電,因此開關(guān)速度快、時(shí)間短,一般在納秒數(shù)量級(jí)。Power MOSFET的動(dòng)態(tài)特性。如圖3所示。
Power MOSFET 的動(dòng)態(tài)特性用圖3(a)電路測(cè)試。圖中,up為矩形脈沖電壓信號(hào)源;RS為信號(hào)源內(nèi)阻;RG為柵極電阻;RL為漏極負(fù)載電阻;RF用以檢測(cè)漏極電流。
Power MOSFET 的開關(guān)過程波形,如圖3(b)所示。
Power MOSFET 的開通過程:由于Power MOSFET 有輸入電容,因此當(dāng)脈沖電壓up的上升沿到來時(shí),輸入電容有一個(gè)充電過程,柵極電壓uGS按指數(shù)曲線上升。當(dāng)uGS上升到開啟電壓UT時(shí),開始形成導(dǎo)電溝道并出現(xiàn)漏極電流iD。從up前沿時(shí)刻到uGS=UT,且開始出現(xiàn)iD的時(shí)刻,這段時(shí)間稱為開通延時(shí)時(shí)間td(on)。此后,iD隨uGS的上升而上升,uGS從開啟電壓UT上升到Power MOSFET臨近飽和區(qū)的柵極電壓uGSP這段時(shí)間,稱為上升時(shí)間tr。這樣Power MOSFET的開通時(shí)間
ton=td(on)+tr (2)
Power MOSFET的關(guān)斷過程:當(dāng)up信號(hào)電壓下降到0時(shí),柵極輸入電容上儲(chǔ)存的電荷通過電阻RS和RG放電,使柵極電壓按指數(shù)曲線下降,當(dāng)下降到uGSP 繼續(xù)下降,iD才開始減小,這段時(shí)間稱為關(guān)斷延時(shí)時(shí)間td(off)。此后,輸入電容繼續(xù)放電,uGS繼續(xù)下降,iD也繼續(xù)下降,到uGS< SPAN>T時(shí)導(dǎo)電溝道消失,iD=0,這段時(shí)間稱為下降時(shí)間tf。這樣Power MOSFET 的關(guān)斷時(shí)間
toff=td(off)+tf (3)
從上述分析可知,要提高器件的開關(guān)速度,則必須減小開關(guān)時(shí)間。在輸入電容一定的情況下,可以通過降低驅(qū)動(dòng)電路的內(nèi)阻RS來加快開關(guān)速度。
電力場(chǎng)效應(yīng)管晶體管是壓控器件,在靜態(tài)時(shí)幾乎不輸入電流。但在開關(guān)過程中,需要對(duì)輸入電容進(jìn)行充放電,故仍需要一定的驅(qū)動(dòng)功率。工作速度越快,需要的驅(qū)動(dòng)功率越大。{{分頁}}
2、 動(dòng)態(tài)參數(shù)
(1) 極間電容
Power MOSFET的3個(gè)極之間分別存在極間電容CGS,CGD,CDS。通常生產(chǎn)廠家提供的是漏源極斷路時(shí)的輸入電容CiSS、共源極輸出電容CoSS、反向轉(zhuǎn)移電容CrSS。它們之間的關(guān)系為
CiSS=CGS+CGD (4)
CoSS=CGD+CDS (5)
CrSS=CGD (6)
前面提到的輸入電容可近似地用CiSS來代替。
(2) 漏源電壓上升率
器件的動(dòng)態(tài)特性還受漏源電壓上升率的限制,過高的du/dt可能導(dǎo)致電路性能變差,甚至引起器件損壞。
四、電力場(chǎng)效應(yīng)管的安全工作區(qū)
1、 正向偏置安全工作區(qū)
正向偏置安全工作區(qū),如圖4所示。它是由最大漏源電壓極限線I、最大漏極電流極限線Ⅱ、漏源通態(tài)電阻線Ⅲ和最大功耗限制線Ⅳ,4條邊界極限所包圍的區(qū)域。圖中示出了4種情況:直流DC,脈寬10ms,1ms,10μs。它與GTR安全工作區(qū)比有2個(gè)明顯的區(qū)別:①因無二次擊穿問題,所以不存在二次擊穿功率PSB限制線;②因?yàn)樗☉B(tài)電阻較大,導(dǎo)通功耗也較大,所以不僅受最大漏極電流的限制,而且還受通態(tài)電阻的限制。
2、 開關(guān)安全工作區(qū)
開關(guān)安全工作區(qū)為器件工作的極限范圍,如圖5所示。它是由最大峰值電流IDM、最小漏極擊穿電壓BUDS和最大結(jié)溫TJM決定的,超出該區(qū)域,器件將損壞。
3、 轉(zhuǎn)換安全工作區(qū)
因電力場(chǎng)效應(yīng)管工作頻率高,經(jīng)常處于轉(zhuǎn)換過程中,而器件中又存在寄生等效二極管,它影響到管子的轉(zhuǎn)換問題。為限制寄生二極管的反向恢復(fù)電荷的數(shù)值,有時(shí)還需定義轉(zhuǎn)換安全工作區(qū)。
器件在實(shí)際應(yīng)用中,安全工作區(qū)應(yīng)留有一定的富裕度。
五、電力場(chǎng)效應(yīng)管的驅(qū)動(dòng)和保護(hù)
1、 電力場(chǎng)效應(yīng)管的驅(qū)動(dòng)電路
電力場(chǎng)效應(yīng)管是單極型壓控器件,開關(guān)速度快。但存在極間電容,器件功率越大,極間電容也越大。為提高其開關(guān)速度,要求驅(qū)動(dòng)電路必須有足夠高的輸出電壓、較高的電壓上升率、較小的輸出電阻。另外,還需要一定的柵極驅(qū)動(dòng)電流。
開通時(shí),柵極電流可由下式計(jì)算:
IGon=CiSSuGS/tr=(GGS+CGD)uGS/ t r (7)
關(guān)斷時(shí),柵極電流由下式計(jì)算:
IGoff=CGDuDS/tf (8)
式(7)是選取開通驅(qū)動(dòng)元件的主要依據(jù),式(8)是選取關(guān)斷驅(qū)動(dòng)元件的主要依據(jù)。
為了滿足對(duì)電力場(chǎng)效應(yīng)管驅(qū)動(dòng)信號(hào)的要求,一般采用雙電源供電,其輸出與器件之間可采用直接耦合或隔離器耦合。
電力場(chǎng)效應(yīng)管的一種分立元件驅(qū)電路,如圖6所示。電路由輸入光電隔離和信號(hào)放大兩部分組成。當(dāng)輸入信號(hào)ui 為0時(shí),光電耦合器截止,運(yùn)算放大器A輸出低電平,三極管V3導(dǎo)通,驅(qū)動(dòng)電路約輸出負(fù)20V驅(qū)動(dòng)電壓,使電力場(chǎng)效應(yīng)管關(guān)斷。當(dāng)輸入信號(hào)ui為正時(shí),光耦導(dǎo)通,運(yùn)放A輸出高電平,三極管V2導(dǎo)通,驅(qū)動(dòng)電路約輸出正20V電壓,使電力場(chǎng)效應(yīng)管開通。{{分頁}}
MOSFET的集成驅(qū)動(dòng)電路種類很多,下面簡(jiǎn)單介紹其中幾種:
IR2130是美國生產(chǎn)的28引腳集成驅(qū)動(dòng)電路,可以驅(qū)動(dòng)電壓不高于600V電路中的MOSFET,內(nèi)含過電流、過電壓和欠電壓等保護(hù),輸出可以直接驅(qū)動(dòng)6個(gè)MOSFET或IGBT。單電源供電,最大20V。廣泛應(yīng)用于三相MOSFET和IGBT的逆變器控制中。
IR2237/2137是美國生產(chǎn)的集成驅(qū)動(dòng)電路,可以驅(qū)動(dòng)600V及1200V線路的MOSFET。其保護(hù)性能和抑制電磁干擾能力更強(qiáng),并具有軟啟動(dòng)功能,采用三相柵極驅(qū)動(dòng)器集成電路,能在線間短路及接地故障時(shí),利用軟停機(jī)功能抑制短路造成過高峰值電壓。利用非飽和檢測(cè)技術(shù),可以感應(yīng)出高端MOSFET和IGBT的短路狀態(tài)。此外,內(nèi)部的軟停機(jī)功能,經(jīng)過三相同步處理,即使發(fā)生因短路引起的快速電流斷開現(xiàn)象,也不會(huì)出現(xiàn)過高的瞬變浪涌過電壓,同時(shí)配有多種集成電路保護(hù)功能。當(dāng)發(fā)生故障時(shí),可以輸出故障信號(hào)。
TLP250是日本生產(chǎn)的雙列直插8引腳集成驅(qū)動(dòng)電路,內(nèi)含一個(gè)光發(fā)射二極管和一個(gè)集成光探測(cè)器,具有輸入、輸出隔離,開關(guān)時(shí)間短,輸入電流小、輸出電流大等特點(diǎn)。適用于驅(qū)動(dòng)MOSFET或IGBT。
2、 電力場(chǎng)效應(yīng)管的保護(hù)措施
電力場(chǎng)效應(yīng)管的絕緣層易被擊穿是它的致命弱點(diǎn),柵源電壓一般不得超過
手機(jī)電池相關(guān)文章:手機(jī)電池修復(fù) 晶體管相關(guān)文章:晶體管工作原理
相關(guān)推薦
技術(shù)專區(qū)
- FPGA
- DSP
- MCU
- 示波器
- 步進(jìn)電機(jī)
- Zigbee
- LabVIEW
- Arduino
- RFID
- NFC
- STM32
- Protel
- GPS
- MSP430
- Multisim
- 濾波器
- CAN總線
- 開關(guān)電源
- 單片機(jī)
- PCB
- USB
- ARM
- CPLD
- 連接器
- MEMS
- CMOS
- MIPS
- EMC
- EDA
- ROM
- 陀螺儀
- VHDL
- 比較器
- Verilog
- 穩(wěn)壓電源
- RAM
- AVR
- 傳感器
- 可控硅
- IGBT
- 嵌入式開發(fā)
- 逆變器
- Quartus
- RS-232
- Cyclone
- 電位器
- 電機(jī)控制
- 藍(lán)牙
- PLC
- PWM
- 汽車電子
- 轉(zhuǎn)換器
- 電源管理
- 信號(hào)放大器
評(píng)論