心電圖前端的信號采集挑戰(zhàn)
心壁收縮產(chǎn)生的動作電位將電流從心臟傳遍全身。傳播電流在身體的不同位置產(chǎn)生不同的電位,可由電極通過使用金屬和鹽制成的生物變送器在表皮感應到。此電位是一種帶寬為 0.05Hz 至 100Hz(有時高達 1kHz)的 AC 信號。存在更大的外部高頻噪聲加 50Hz/60Hz 干擾的正常模式(與電極信號混合)和共模電壓(所有電極信號共有)時,它的峰至峰值一般約為 1mV。
本文引用地址:http://cafeforensic.com/article/81071.htm共模由兩個部分組成:(1) 50Hz 或 60Hz 干擾和 (2) DC 電極偏移電位。生物物理帶寬范圍內(nèi)的其它噪音或更高頻率來自移動偽像,移動偽像會改變皮膚電極接口、肌肉收縮或肌電圖峰值、呼吸(可以是有節(jié)奏的或無節(jié)奏的)、電磁干擾 (EMI) 以及源自輸入耦合的其它電子器件的噪聲。有些噪聲可借助高輸入阻抗儀器放大器 (INA)(例如 INA326 或 INA118)來抵消,這種放大器可消除兩種輸入都常見的 AC 線路噪聲,并放大輸入中存在的剩余不規(guī)則信號;IA CMR 越高,噪聲抑制就越高。由于它們發(fā)生在身體的不同位置,左臂和右臂 ECG 信號將處于不同的電壓水平,并被 IA 放大。要進一步抑制 50Hz 和 60Hz 的噪聲,可使用推導共模電壓的運算放大器倒轉(zhuǎn)共模信號,并使用放大器 A2 通過右腿驅(qū)回病人體內(nèi)。僅需要幾微安培或更弱的電流就可取得顯著的 CMR 改進,并維持在 UL544 限制內(nèi)。
三個 ECG 電極通過具有 5V 單電源的 CMOS 器件與病人相連。
電源電壓
與大多數(shù)其它應用一樣,生物物理監(jiān)控的系統(tǒng)電源電壓持續(xù)趨于較低的、單電源電平。盡管雙極電源仍在使用,5V 系統(tǒng)現(xiàn)已很常見,并趨向于 3.3V 單電源。這一趨勢為面對 500mV 電極電位的設計人員帶來一項重大的挑戰(zhàn),并強調(diào)了對精度信號調(diào)節(jié)解決方案的需求。盡管以下討論 集中在單電源設計上,所涉及的原理同樣適用于雙極電源設計。下面列出了單電源和雙極電源器件的推薦列表。
頻率響應
用于病人監(jiān)控的標準 3dB 頻率為 0.05Hz 至 30Hz,而診斷級監(jiān)控需要 0.05Hz 至 100Hz 或更高頻率。雖然 ECG 波形的重要特性具有超低頻率的特點,所有 ECG 前端都必須與 AC 耦合,以便從電極偏移電位中移除偽像。
電極電位
由于電極電位可達到 +/-500mV,因此可通過 AC 耦合在低頻下消除電極電位的影響以實現(xiàn)精確測量。反饋配置中的 DC 恢復放大器將 DC 偏移調(diào)零。如果左臂 DC 偏移為 +300mV 而右臂電極為 0V DC,則差動輸入電壓為 300mV。由于儀表放大器具有 10 的增益,因此儀表放大器的輸出顯示為 3V。如果增益為 50 或以上,輸出放大器會嘗試將信號向上驅(qū)動至 150V,但永遠不會達到這一電壓,因為反饋集成器會對參考點應用等伏負電壓。利用此線性求和效果,3V 正偏移由負 3V 校正電壓所抵消。該 DC 恢復的結(jié)果是將原 DC 耦合放大器轉(zhuǎn)變?yōu)?AC 耦合放大器。因為 DC 電極偏移已經(jīng)消除,所以輸出級可放大信號,在不飽和的情況下最大程度地擴展數(shù)據(jù)轉(zhuǎn)換器輸入范圍。
儀表放大器要求
低增益下的穩(wěn)定性(G = 1 至 10)
高共模抑制 (CMR)
低輸入偏置電流 (IB)
良好的輸出軌擺幅
超低偏移和漂移
運算放大器要求
低噪聲,高增益(增益 = 10 至 1000)
軌至軌輸出
超低偏移和漂移
評論