EEPW首頁(yè) >>
主題列表 >>
ls-svm
ls-svm 文章 進(jìn)入ls-svm技術(shù)社區(qū)
適用于手語(yǔ)采集與輸入的智能手套及翻譯系統(tǒng)
- 設(shè)計(jì)并實(shí)現(xiàn)了一款以ESP32-C3-WROOM-02為核心,基于物聯(lián)網(wǎng)、UDP協(xié)議、姿態(tài)傳感器和彎曲傳感器的適用于手語(yǔ)采集與輸入的智能手套及翻譯系統(tǒng)。該系統(tǒng)通過(guò)在手套上綁定姿態(tài)傳感器MPU6050,配合彎曲傳感器動(dòng)態(tài)監(jiān)測(cè)手的運(yùn)動(dòng)和姿態(tài),通過(guò)ESP32芯片采集傳感器數(shù)據(jù)并做初步處理,經(jīng)單片機(jī)上的Wi-Fi模塊通過(guò) UDP 協(xié)議傳輸給云端采用 SVM 算法識(shí)別靜態(tài)手勢(shì),此外,本設(shè)計(jì)還搭建了基于Python的Web應(yīng)用程序框架Streamlit實(shí)現(xiàn)在網(wǎng)頁(yè)上實(shí)時(shí)呈現(xiàn)處理結(jié)果和全平臺(tái)兼容,方便用戶使用。
- 關(guān)鍵字: 202308 手勢(shì)識(shí)別 ESP32 彎曲傳感器 SVM 神經(jīng)網(wǎng)絡(luò)
了解基于FastCV視覺(jué)庫(kù)的SVM機(jī)器學(xué)習(xí)算法
- 了解基于FastCV視覺(jué)庫(kù)的SVM機(jī)器學(xué)習(xí)算法-SVM是一種常用的機(jī)器學(xué)習(xí)算法,在人工智能、模式識(shí)別、圖像識(shí)別等領(lǐng)域有著非常廣泛的應(yīng)用,本節(jié)將結(jié)合FastCV庫(kù)提供的fcvSVMPredict2Classf32機(jī)器學(xué)習(xí)函數(shù)API,對(duì)SVM原理及用法進(jìn)行介紹,為后續(xù)大家在使用FastCV進(jìn)行圖像識(shí)別類的應(yīng)用開(kāi)發(fā)提供參考。
- 關(guān)鍵字: FastCV SVM 機(jī)器學(xué)習(xí)
基于SVM和sigmoid函數(shù)的字符識(shí)別自適應(yīng)學(xué)習(xí)算法
- 手寫字符的一個(gè)突出特點(diǎn)就是模式具有較大的變化性,表現(xiàn)為模式空間的類內(nèi)分布過(guò)于分散,類間交疊嚴(yán)重,這使得識(shí)別模型無(wú)法“恰當(dāng)”地?cái)M合每類模式的數(shù)據(jù)分布或類別之間的判別面。在識(shí)別模型過(guò)程中,通過(guò)自適應(yīng)學(xué)習(xí)就能較好地?cái)M合特定書寫者筆跡特征向量的空間分布,從而有利于識(shí)別率的提高。當(dāng)然,自適應(yīng)學(xué)習(xí)的結(jié)果只是提高了對(duì)特定書寫者的識(shí)別率,但通過(guò)為不同人的筆跡特征向量提供不同的識(shí)別模型,就能夠從總體上提高系統(tǒng)的識(shí)別率。 任何一種自適應(yīng)學(xué)習(xí)算法都基于一定的識(shí)別方法。從目前已有的文獻(xiàn)來(lái)看,大致
- 關(guān)鍵字: SVM sigmoid
飛思卡爾與南京航空航天大學(xué)合作推出空間矢量調(diào)制–直接轉(zhuǎn)矩控制(SVM-DTC)解決方案
- 飛思卡爾半導(dǎo)體 [NYSE: FSL] 與南京航空航天大學(xué)日前聯(lián)合宣布,雙方合作推出無(wú)位置傳感器型空間矢量調(diào)制—直接轉(zhuǎn)矩控制(SVM-DTC)解決方案。該創(chuàng)新解決方案基于飛思卡爾數(shù)字信號(hào)控制器(DSC)56F8xxx系列,并極好地解決了壓縮機(jī)、風(fēng)機(jī)控制應(yīng)用在綠色環(huán)保、高性價(jià)比、面市時(shí)間和自適應(yīng)性等方面的多項(xiàng)要求。 與當(dāng)前業(yè)內(nèi)采用的其它控制算法相比,SVM-DTC是一種結(jié)構(gòu)簡(jiǎn)單、動(dòng)態(tài)性能良好的自適應(yīng)電機(jī)控制算法,具有低噪音、低振動(dòng)等特點(diǎn)。SVM-DTC不依賴于轉(zhuǎn)子參數(shù),控制回路較少,因
- 關(guān)鍵字: 飛思卡爾 SVM-DTC
基于優(yōu)化GDTW-SVM算法的聯(lián)機(jī)手寫識(shí)別
- 摘要:基于高斯動(dòng)態(tài)時(shí)間規(guī)整核函數(shù)(Gaussian Dynamic Time Warping kernel)的支持向量機(jī)(GDTW-SVM)在聯(lián)機(jī)手寫識(shí)別中有較高的識(shí)別率,但是存在計(jì)算復(fù)雜度高的問(wèn)題。結(jié)合聯(lián)機(jī)手寫識(shí)別中特征向量的特點(diǎn),提出了通過(guò)引入
- 關(guān)鍵字: GDTW-SVM 算法 聯(lián)機(jī) 識(shí)別
基于LS-SVM非線性內(nèi)??刂圃诤缚p跟蹤中的運(yùn)用
- 焊接過(guò)程中,由于工件的加工誤差、熱變形、定位誤差等各種因素的影響,經(jīng)常使焊槍偏離焊縫中心,導(dǎo)致焊接質(zhì)量下降...
- 關(guān)鍵字: LS-SVM
一種基于SVM的數(shù)字儀表顯示值識(shí)別方法
- 數(shù)字儀表識(shí)別在工業(yè)中應(yīng)用廣泛,但各種儀表差別較大,方法也差別很多。在此提出了一種數(shù)字儀表顯示值的快速識(shí)別方法,該方法首先由計(jì)算機(jī)自動(dòng)定位分割圖像中的數(shù)字區(qū)域,并實(shí)現(xiàn)了單個(gè)數(shù)字的切分,然后根據(jù)數(shù)字特點(diǎn),創(chuàng)新性地改進(jìn)了特征提取方法,對(duì)每個(gè)數(shù)字圖像提取了一組具有較高區(qū)分度,且計(jì)算簡(jiǎn)單的典型特征。最后,基于SVM識(shí)別,構(gòu)造了一種數(shù)字識(shí)別器,實(shí)現(xiàn)了儀表顯示值的實(shí)時(shí)識(shí)別。
- 關(guān)鍵字: 識(shí)別 方法 顯示 儀表 SVM 數(shù)字 基于
基于LS-SVM辨識(shí)的溫度傳感器非線性校正研究
- 引 言 在傳感器非線性校正領(lǐng)域,國(guó)內(nèi)外許多學(xué)者提出多種方法,并得到廣泛應(yīng)用,傳統(tǒng)方法歸納起來(lái)可分兩類:一類是公式法,即以實(shí)驗(yàn)數(shù)據(jù)為基礎(chǔ),用最小二乘等系統(tǒng)辨識(shí)方法求取擬合曲線參數(shù),建立校正曲線的解析表達(dá)式;另一類是表格法,以查表為手段,通過(guò)分段線性化來(lái)逼近傳感器的非線性特性曲線。 近些年來(lái),隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,又有不少學(xué)者利用神經(jīng)網(wǎng)絡(luò)的非線性回歸能力,擬合傳感器輸出與輸入的非線性關(guān)系,建立傳感器傳輸特性的逆模型,從而使傳感器亦即神經(jīng)網(wǎng)絡(luò)構(gòu)成的系統(tǒng)線性化。但是,該方法也存在一定的局限性,主要表
- 關(guān)鍵字: 測(cè)試 測(cè)量 LS-SVM 溫度傳感器 非線性校正 傳感器
基于STS―SVM技術(shù)的級(jí)聯(lián)型多電平變流器
- 在簡(jiǎn)要介紹了STS―SVM技術(shù)在級(jí)聯(lián)型多電平變流器中的實(shí)現(xiàn)方法的基礎(chǔ)上分析了其技術(shù)特點(diǎn),并進(jìn)行了實(shí)驗(yàn)驗(yàn)證。
- 關(guān)鍵字: STS SVM 級(jí)聯(lián)型 電平
共12條 1/1 1 |
ls-svm介紹
您好,目前還沒(méi)有人創(chuàng)建詞條ls-svm!
歡迎您創(chuàng)建該詞條,闡述對(duì)ls-svm的理解,并與今后在此搜索ls-svm的朋友們分享。 創(chuàng)建詞條
歡迎您創(chuàng)建該詞條,闡述對(duì)ls-svm的理解,并與今后在此搜索ls-svm的朋友們分享。 創(chuàng)建詞條
關(guān)于我們 -
廣告服務(wù) -
企業(yè)會(huì)員服務(wù) -
網(wǎng)站地圖 -
聯(lián)系我們 -
征稿 -
友情鏈接 -
手機(jī)EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權(quán)所有 北京東曉國(guó)際技術(shù)信息咨詢有限公司
京ICP備12027778號(hào)-2 北京市公安局備案:1101082052 京公網(wǎng)安備11010802012473
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權(quán)所有 北京東曉國(guó)際技術(shù)信息咨詢有限公司
京ICP備12027778號(hào)-2 北京市公安局備案:1101082052 京公網(wǎng)安備11010802012473