一款并聯(lián)諧振逆變電源的電路設(shè)計
前言 在現(xiàn)代工業(yè)的金屬熔煉、彎管,熱鍛,焊接和表面熱處理等行業(yè)中,感應(yīng)加熱技術(shù)被廣泛應(yīng)用。感應(yīng)加熱是根據(jù)電磁感應(yīng)原理,利用工件中渦流產(chǎn)生的熱量對工件進行加熱的,具有加熱效率高,速度快,可控性好,易于實現(xiàn)高溫和局部加熱,易于實現(xiàn)機械化和自動化等優(yōu)點。隨著電力電子學(xué)及功率半導(dǎo)體器件的發(fā)展,感應(yīng)加熱電源基本拓撲結(jié)構(gòu)經(jīng)過不斷的完善,一般由整流器、濾波器、逆變器及一些控制和保護電路組成。逆變器在感應(yīng)加熱電源中起著十分重要的作用,根據(jù)逆變器的特點,逆變電源又分為串聯(lián)諧振和并聯(lián)諧振兩種。本文提出了一種應(yīng)用于感應(yīng)加熱的并聯(lián)諧振逆變電源設(shè)計方案,針對其主電路、斬波電路及逆變器控制電路等進行了分析和設(shè)計。
本文引用地址:http://cafeforensic.com/article/174693.htm電路構(gòu)成及設(shè)計
電源的系統(tǒng)框圖為圖1所示,三相交流電壓通過不控整流及濾波電路后轉(zhuǎn)換為直流電壓,該電壓被送到直流斬波器進行斬波調(diào)節(jié),變?yōu)?a class="contentlabel" href="http://cafeforensic.com/news/listbylabel/label/功率">功率可調(diào)節(jié)的近似恒流源后輸入逆變器,之后控制感應(yīng)加熱負載。直流斬波控制部分則通過傳感器檢測斬波輸出的電流信號,經(jīng)PI調(diào)節(jié)器,控制PWM的輸出脈寬,從而改變斬波輸出電流的大小,實現(xiàn)閉環(huán)控制。逆變器控制部分采用鎖相環(huán)頻率跟蹤電路控制逆變器的工作頻率,產(chǎn)生高頻觸發(fā)脈沖,驅(qū)動逆變電路中功率器件的通斷。
主電路
1、并聯(lián)諧振逆變電源的主電路由三相不控整流橋、直流斬波器、電流源并聯(lián)諧振逆變器和負載匹配電路四部分組成(圖2)。
這里采用不控整流加斬波構(gòu)成直流電流源,主要是考慮到其具有保護速度快以及高頻斬波帶來的濾波器尺寸小等優(yōu)點。斬波器和逆變器中的主功率器件(VT與VT1、VT2、VT3、VT4)均采用IGBT管。逆變器橋臂的每一個IGBT上均串聯(lián)一個二極管,通過 IGBT的正向電流也將全部通過串聯(lián)二極管,這就要求串聯(lián)二極管能夠通過很大的正向電壓和承受很高的反向電壓,因此VD1~VD4選用的是快速恢復(fù)二級管。逆變器通過半導(dǎo)體開關(guān)有規(guī)律地切換,在負載側(cè)得到一定頻率的交流電流,其頻率由開關(guān)的動作頻率決定,由于是電流源供電,逆變器輸出電流近似為方波,負載對基波分量呈高阻,壓降較大,而三次及三次以上諧波產(chǎn)生的壓降較小,可近似認輸出電壓(即電容C兩端電壓)為正弦波。
2、PWM斬波控制
斬波的實現(xiàn)是通過控制IGBT(圖2中VT管)的導(dǎo)通來控制電流的大小,從而間接控制功率。在穩(wěn)態(tài)運行過程中,為實時了解負載的變化,需從諧振回路中反饋電流的變化,通過與基準值比較獲得占空比的大小。圖1系統(tǒng)框圖中的電流檢測可選用霍爾電流傳感器,檢測逆變器直流母線輸入電流的大小??刂齐娐凡捎?PI調(diào)節(jié)器,由運放與電阻、電容等元件構(gòu)成,可將檢測電流與設(shè)定電流比較,只要反饋和設(shè)定有偏差,就可通過調(diào)節(jié),使反饋向設(shè)定值逼近直至等于設(shè)定值,從而實現(xiàn)無差調(diào)節(jié),提高系統(tǒng)穩(wěn)定性。PWM脈寬控制選用TL494,它是一種應(yīng)用廣泛的PWM控制芯片,具有抗干擾能力強、結(jié)構(gòu)簡單、可靠性高以及價格便宜等特點。在本設(shè)計中具體電路如圖3所示:輸入(即PI調(diào)節(jié)輸出)自1腳引入,引腳13接低電平,PWM脈沖信號從8腳輸出,經(jīng)驅(qū)動模塊放大后觸發(fā)斬波器元件 IG-BT的導(dǎo)通。
3、逆變器觸發(fā)控制
并聯(lián)諧振逆變器的觸發(fā)控制中,為避免大電感Ld上產(chǎn)生大的感應(yīng)電勢,電流必須是連續(xù)的,因此要保證逆變器在換流時,VT1、VT3和VT2、VT4兩組橋臂應(yīng)遵循先開通后關(guān)斷的原則,即要求兩組橋臂的觸發(fā)脈沖有重疊區(qū),這點與串聯(lián)諧振逆變器有較大不同。圖4是逆變器觸發(fā)脈沖的波形。
加熱工件在加熱過程中會引起諧振頻率的變化,為使逆變器可靠工作,逆變器需要始終工作在功率因數(shù)接近或等于1的準諧振或諧振狀態(tài),以實現(xiàn)逆變器件的零電壓換流。圖5顯示了逆變器觸發(fā)控制電路的構(gòu)成。對逆變電源的負載正弦電壓采作為鎖相環(huán)PLL的輸入?yún)⒖茧妷???紭?、過零比較,得到U1(t),慮到觸發(fā),驅(qū)動電路和開關(guān)器件的延時等情況,在PLL內(nèi)部加入了相位補償電路,構(gòu)成無相差鎖相環(huán)電路。鎖相環(huán)的輸出電由U2(t)產(chǎn)生的Ⅰ、Ⅱ兩路壓U2(t) 與輸入U1(t)可實現(xiàn)零相位差,驅(qū)動輸出即可實現(xiàn)圖4中逆變器VT1~VT4的觸發(fā)脈沖波形。
4、IGBT驅(qū)動與保護電路
本電源采用IGBT作為逆變開關(guān)和直流斬波器件,雖然具有電流容量大、驅(qū)動功率小、開關(guān)頻率高等優(yōu)點,但IGBT過流過壓能力相對晶閘管較弱,尤其是其承受反壓能力更加脆弱。因此IGBT驅(qū)動及保護電路性能的好壞直接影響到電源運行的可靠性和高效性。本設(shè)計中IGBT的驅(qū)動采用日本富士公司EXB系列的EXB841集成化驅(qū)動電路,它適合驅(qū)動300A/1200V以下的IGBT,其最高工作頻率為 40kHz。
圖6為IGBT驅(qū)動保護電路,當(dāng)IGBT在發(fā)生故障或調(diào)試時出現(xiàn)過電流或短路的情況,可通過EXB841驅(qū)動電路內(nèi)部設(shè)有電流保護功能進行保護,EXB841判斷過流的依據(jù)是檢測IGBT的集-射極間的電壓,這里在IGBT集電極與EXB841的6腳間串聯(lián)一個快速恢復(fù)二極管EAR34-10,該二極管正向?qū)▔航禐?V,反向恢復(fù)時間150ns。可以有效地提高EXB841對過流判斷的靈敏度,增強保護能力。為防止IGBT受外界干擾使柵射電壓過高引起器件誤導(dǎo)通,尤其是在有上下橋臂的變換器或逆變器中,易造成同臂短路。在柵射極并接一電阻RGE,并在柵射極間并接2只反向串聯(lián)的穩(wěn)壓管。
在設(shè)計中同時還加入了RS觸發(fā)器:當(dāng)IGBT發(fā)生過流時,EXB841的5腳電平為低,RS觸發(fā)器的S端變?yōu)楦唠娖剑敵龆薗輸出高電平,經(jīng)過三極管輸出的本地過流信號為低,此電平加到與門上可封鎖EXB841的輸入信號,達到及時撤出柵極信號、保護IGBT的目的。
另外一個可封鎖EXB841的輸入的信號為母線過流信號,如圖7。當(dāng)逆變器輸出端負載短路、逆變驅(qū)動電路工作不正?;驌Q流失敗時,均會引起短路過流。通過霍爾電流傳感器監(jiān)視逆變器輸入的直流母線的電流,轉(zhuǎn)換成電壓信號,送入高速比較器與基準電壓相比較,當(dāng)超過基準電壓時,表示有母線有過流情況發(fā)生,過流保護動作。比較器輸出高電平,三極管導(dǎo)通,則輸出為低,實現(xiàn)可靠的過流保護。
結(jié)束語
本設(shè)計的PWM斬波功率調(diào)節(jié)電路中運用PI調(diào)節(jié)閉環(huán)控制能夠提高系統(tǒng)的工作穩(wěn)定性。鎖相環(huán)逆變器頻率跟蹤電路的設(shè)計,可實現(xiàn)在加熱過程中負載參數(shù)變化時對諧振工作頻率的自動跟蹤,使逆變器工作在容性近諧振狀態(tài),保證逆變器的運行安全。
霍爾傳感器相關(guān)文章:霍爾傳感器工作原理
電流傳感器相關(guān)文章:電流傳感器原理 霍爾傳感器相關(guān)文章:霍爾傳感器原理 電子負載相關(guān)文章:電子負載原理 鎖相環(huán)相關(guān)文章:鎖相環(huán)原理 熱保護器相關(guān)文章:熱保護器原理
評論