數(shù)字電源技術(shù)助力實(shí)現(xiàn)高效率電源
引言
本文引用地址:http://cafeforensic.com/article/175224.htm為推廣高效率節(jié)能產(chǎn)品,越來越多的國(guó)家和地區(qū)紛紛發(fā)布了各種節(jié)能規(guī)范和標(biāo)準(zhǔn)。例如,國(guó)際能源署(IEA)所倡導(dǎo)“1W計(jì)劃”,美國(guó)環(huán)保署(EPA)的“能源之星”計(jì)劃,以及中國(guó)節(jié)能產(chǎn)品認(rèn)證中心(CECP)所制定的規(guī)章等都把節(jié)能環(huán)保放在重要位置。如何提高電源的效率,是目前電源設(shè)計(jì)中面臨的重要課題。數(shù)字電源技術(shù)的出現(xiàn)為提高電源的效率提供了新的方法。 ADP1043是ADI公司推出的一款針對(duì)高端服務(wù)器、存儲(chǔ)器以及通信設(shè)備等電源所設(shè)計(jì)的數(shù)字電源控制器,可支持多種拓?fù)浣Y(jié)構(gòu),并利用直觀的圖形用戶界面(GUI)無需用語言進(jìn)行編程,便可在幾分鐘之內(nèi)配置包括頻率、時(shí)序、電壓設(shè)置與保護(hù)限制等系統(tǒng)電源參數(shù)。圖1所示為ADP1043的典型應(yīng)用電路。其所采用的數(shù)字電源技術(shù)可幫助實(shí)現(xiàn)高效率電源。
圖1 ADP1043典型應(yīng)用電路
同步整流技術(shù)
同步整流技術(shù)是指用導(dǎo)通電阻較低的MOSFET來替代整流二極管,從而達(dá)到降低整流損耗、提高效率的目的。在同步整流技術(shù)中,為避免交叉導(dǎo)通的危險(xiǎn),在主開關(guān)與同步整流開關(guān)的驅(qū)動(dòng)信號(hào)之間必須設(shè)定一定的死區(qū)時(shí)間。在死區(qū)時(shí)間內(nèi),電感電流流過同步整流MOSFET的體二極管。而這個(gè)體二極管一般會(huì)具有較高的前向?qū)妷篤F,在死區(qū)時(shí)間較大時(shí),會(huì)造成較大的損耗。因此,為最大限度地提高效率,要求死區(qū)時(shí)間盡可能小。但是在傳統(tǒng)的模擬方案中,自驅(qū)動(dòng)型除了應(yīng)用的限制外,還很難提供精確的控制時(shí)序;對(duì)于外驅(qū)動(dòng)型,由于其參數(shù)是由電阻、電容等無源器件進(jìn)行設(shè)定,存在誤差、老化、溫漂等問題,為保證有足夠的余量,死區(qū)時(shí)間也不可能設(shè)置得很小。因此,ADP1043的數(shù)字方案是很好的選擇。
圖2所示為ADP1043在全橋拓?fù)潆娐废碌腜WM和SR的GUI設(shè)置界面。通過設(shè)置T9、T10、T11和T125便可精確獲得同步整流MOSFET所需的死區(qū)時(shí)間,其中每次調(diào)整的最小時(shí)間為5ns。
圖2 PWM和SR的GUI設(shè)置界面
伏秒平衡控制技術(shù)
在傳統(tǒng)的橋式拓?fù)潆娐分?,一般為防止變壓器的偏磁,?huì)在變壓器的原邊回路中串入一個(gè)隔直電容器。這樣做存在缺點(diǎn),一方面是增加了電源的成本和體積,另一方面又增加了損耗,降低了效率。ADP1043采用伏秒平衡控制的數(shù)字技術(shù)解決了該問題。
如圖3所示,在每個(gè)開關(guān)周期中,ADP1043通過CS1分別測(cè)量流過開關(guān)管A、D和開關(guān)管B、C的電流并計(jì)算其差值,通過差值信號(hào)調(diào)節(jié)驅(qū)動(dòng)信號(hào)OUTB和OUTD的脈寬,對(duì)失衡進(jìn)行補(bǔ)償。例如,如圖4所示,當(dāng)CS1測(cè)量到流過開關(guān)管B、 C的電流大于開關(guān)管A、D時(shí),便會(huì)減小OUTB的脈寬,增大OUTD的脈寬,這樣流過開關(guān)管B、C的電流會(huì)減小,而流過開關(guān)管A、D的電流會(huì)增大,經(jīng)過若干周期后,電流自動(dòng)實(shí)現(xiàn)了平衡。采用該技術(shù)后,可有效防止偏磁,并且省去隔直電容器,提高效率和可靠性。
圖3 伏秒平衡控制技術(shù)
圖4 伏秒平衡控制波形
動(dòng)態(tài)死區(qū)控制技術(shù)
在傳統(tǒng)模擬方案中,一般設(shè)定一個(gè)足夠長(zhǎng)的固定的死區(qū)時(shí)間可確保電源工作在所有條件下。但是對(duì)于一個(gè)典型的應(yīng)用環(huán)境,這個(gè)死區(qū)時(shí)間往往比所需的時(shí)間長(zhǎng),由于在死區(qū)時(shí)間,是MOSFET的體二極管在導(dǎo)通電流,所以較長(zhǎng)的死區(qū)時(shí)間會(huì)增加損耗,降低電源的效率。ADP1043可根據(jù)負(fù)載的情況,動(dòng)態(tài)調(diào)節(jié)死區(qū)的大小,從而使電源在輕載和滿載時(shí)的效率得以優(yōu)化。
改善輕載效率
除了提高電源在重載下的效率,改善電源輕載時(shí)的效率也同樣至關(guān)重要。這是因?yàn)樵陔娫磯勖慕^大部分時(shí)間內(nèi),工作負(fù)荷一般低于60%,電源很少在滿負(fù)荷下(100%)長(zhǎng)時(shí)間工作,在滿載時(shí)能高效工作的系統(tǒng)并不能保證在輕載時(shí)也同樣保持最佳狀態(tài)。傳統(tǒng)的模擬方案為改善輕載效率,往往需要大規(guī)模改變或增加控制電路,增加了控制的復(fù)雜性,降低了電源的可靠性。而ADP1043所提供的數(shù)字控制技術(shù),無需增加新的控制電路就能輕易的切換控制策略,這對(duì)于模擬電路來說幾乎是不可能的。
評(píng)論