一種基于三電平的單級PFC電路設計
基于上述假設,在階段1[t0,t1]:開關管S3和S4導通。Boost電感(Lin)儲存能量,電感電流線性增加。流經(jīng)開關管的電流是諧振電路和boost電感電流之和。諧振電路兩端電壓VAB為-Vbus/2;
階段2[t1,t2]:開關管S4關斷,箝位二極管Dc2將其電壓箝位于Vbus/2。Boost電感電流將流經(jīng)上方一對開關管并對其體電容放電。此時,VAB為零;
階段3[t2,t3]:開關管S3關斷(由于其體電容被放電,S3將零電壓關斷),電感電流繼續(xù)對中間儲能電容充電,S1、S2體電容放電,待其完全放電后,其體二極管導通。此時,VAB電壓為Vbus/2。
階段4[t3,t4]:開關管S1和S2同時零電壓導通。Boost電感電流和諧振電路電流同時流經(jīng)S1、S2。此時VAB電壓不變,仍為Vbus/2;
階段5[t4,t5]:開關管S1關斷,電壓被箝位二極管Dc1箝位于Vbus/2。諧振電流流經(jīng)S2和Dc1,此時VAB的電壓降為零;
階段6[t5,t6]:開關管S2關斷,諧振電流方向反轉(zhuǎn),并對S3、S4體電容放電;完全放電后,其體二極管導通。直到下一個周期開始,S3、S4將零電壓導通。
2 控制策略及穩(wěn)態(tài)分析
2.1 控制策略
本文中的變換器由多個開關管構(gòu)成。其控制變量也不止一個。因此,在設計時,可以同時采用諧振電路的開關頻率和boost電路的占空比兩個控制變量來分別達到控制輸出電壓和直流母線電壓的目的。本文分別選取boost電路的占空比來獲得需要的直流母線電壓。采用這種控制方式的優(yōu)點是,無論負載如何變化,都能得到所需要的直流母線電壓。
2.2 boost模式
本文設定的boost電路工作在DCM狀態(tài)下,這樣,當boost電感充電時,電感電流將從零開始線性增加,其電流峰值為:
因此,在一個周期內(nèi),其平均電流為:
由于直流母線電壓的大小可根據(jù)不同的交流輸入電壓峰值而變化,其可表示為:
因此,當輸入交流電壓的范圍是90Vms~265Vms時,其直流母線電壓的大小為350~650V。
3 仿真結(jié)果
仿真時,假設經(jīng)過上述分析所設計的一個單級PFC電路的具體電路參數(shù)為:輸出電壓48 V,功率2.3 kW,Vin=90~265Vms,Lr=7μH,Cs=10nF,Cp=15 nF,N1/N2=4,Lin=0.95 μH,儲能電容Cbl=Cb2=4700μF。
若圖3所示為其輸入電壓和輸入電流的波形,且此時的交流輸入電壓Vin為265Vms。那么,圖4所示即為負載變化情況下的功率因數(shù)及直流母線電壓的仿真圖。由圖4可見,在不同的負載情況下,直流母線電壓基本維持在650 V左右;同時,該變換器也擁有較高的輸入功率因數(shù)。
評論