電子線路CAD在高頻電路分析中的挑戰(zhàn)
當(dāng)工作頻率較高(2GHz左右)時(shí),信號(hào)波長逐漸可以與器件尺寸相比擬。片式電感的阻抗呈現(xiàn)出明顯的分布特性,即不同的參考位置存在不同阻抗。圖1所示的分析模型已不適合用以描述高頻工作的電感器件。在高頻條件下,器件的電路響應(yīng)可隨其尺寸和空間結(jié)構(gòu)的不同而發(fā)生相應(yīng)變化,常規(guī)的阻抗測(cè)量參數(shù)已不能準(zhǔn)確反映實(shí)際電路中的響應(yīng)特性。以某型號(hào)移動(dòng)手機(jī)RF功放電路為例,其中兩款用于阻抗匹配的高頻電感(工作頻率1.9GHz)均采用光刻薄膜式電感,若以相同規(guī)格及精度,但Q值明顯較高的疊層片式電感(測(cè)量儀器 HP-4291B)予以取代,其結(jié)果卻是電路傳輸增益下降近10%。說明電路匹配狀態(tài)下降,用低頻分析方法顯然無法準(zhǔn)確解釋高頻應(yīng)用問題,僅僅關(guān)注L( )和Q( )對(duì)片式電感的高頻分析是不適宜的,至少是不夠的。
電磁場(chǎng)理論在工程中常用來分析具有分布特性的高頻應(yīng)用問題。通常在利用阻抗分析儀(HP-4291B)對(duì)片式電感進(jìn)行的測(cè)量中,可通過夾具補(bǔ)償和儀器校準(zhǔn)等手段將測(cè)量精度提高到 0.1nH左右,理論上足以保證電路設(shè)計(jì)所需的精度要求。但不容忽視的問題是,此時(shí)的測(cè)量結(jié)果僅僅反映了匹配狀態(tài)下(測(cè)量夾具設(shè)計(jì)為精確匹配)電感器件端電極界面之間的參數(shù)性能,對(duì)電感器件的內(nèi)部電磁分布情況和外部電磁環(huán)境要求卻未能反映出來。相同測(cè)試參數(shù)的電感可能因內(nèi)電極結(jié)構(gòu)不同而存在完全不同的電磁分布狀態(tài),在高頻條件下,片式電感的實(shí)際電路應(yīng)用環(huán)境(近似匹配、密集貼裝、PCB分布影響)與測(cè)試環(huán)境往往有差異,極易產(chǎn)生各種復(fù)雜的近場(chǎng)反射而發(fā)生實(shí)際響應(yīng)參數(shù)(L、Q)的微量變化。對(duì)RF電路中的低感值電感,這種影響是不容忽視的,我們把這種影響稱之為“分布影響”。
高頻電路(包括高速數(shù)字電路)設(shè)計(jì)中,基于電路性能、器件選擇和電磁兼容等因素的考慮,通常是以網(wǎng)絡(luò)散射分析(S參數(shù))、信號(hào)完整性分析、電磁仿真分析、電路仿真分析等手段,來綜合考量實(shí)際電路系統(tǒng)的工作性能。針對(duì)片式電感器件的“分布影響”問題,一個(gè)可行的解決方案是對(duì)電感器件進(jìn)行結(jié)構(gòu)性電磁仿真并精確提取相應(yīng)的SPICE電路模型參數(shù),作為電路設(shè)計(jì)的依據(jù),以此有效減小電感器件在高頻設(shè)計(jì)應(yīng)用中的誤差影響。國外(日本)主要元器件企業(yè)的片式電感產(chǎn)品技術(shù)參數(shù)大多包含有S參數(shù),通??捎糜诰_的高頻應(yīng)用分析。
電路應(yīng)用
在高頻電路中比較常用的片式電感有光刻薄膜電感、片式繞線電感和疊層片式電感三種。由于內(nèi)電極的結(jié)構(gòu)特點(diǎn)有明顯不同,即使參數(shù)規(guī)格相同情況下,其電路響應(yīng)卻不盡相同。實(shí)際電路應(yīng)用中對(duì)電感器件的選擇有一定規(guī)律和特點(diǎn),在此可略作歸納如下:
阻抗匹配:射頻電路(RF)通常由高放(LNA)、本振(LO)、混頻(MIX)、功放(PA)、濾波(BPF/LPF)等基本電路單元構(gòu)成。在特性阻抗各不相同的單元電路之間,高頻信號(hào)需要低損耗耦合傳輸,阻抗匹配成為必不可少。典型方案是利用電感與電容組合為“倒L”或“T”型匹配電路,對(duì)其中的片式電感,匹配性能的好壞很大程度是取決于電感量L的精確度,其次才是品質(zhì)因素Q的高低。在工作頻率較高時(shí),往往使用光刻薄膜電感來確保高精度的L。其內(nèi)電極集中于同一層面,磁場(chǎng)分布集中,能確保裝貼后的器件參數(shù)變化不大。
諧振放大:典型的高頻放大電路通常采用諧振回路作為輸出負(fù)載。對(duì)其增益和信噪比等主要性能參數(shù)來說,片式電感的品質(zhì)因素Q成為關(guān)鍵。L的少許誤差影響可由多種電路形式予以補(bǔ)償和修正,因而多采用繞線片式電感和疊層片式電感,對(duì)工作頻率下的Q值要求較高。而薄膜片式電感無論是價(jià)格還是性能在此都不適合。
本地振蕩:本振電路(LO)必須由含振蕩回路的放大電路構(gòu)成,通常是以VCO-PLL的形式向RF電路提供精確的參考頻率,因此本振信號(hào)的質(zhì)量直接影響著電路系統(tǒng)的關(guān)鍵性能。振蕩回路中的電感必須具有極高的Q值和穩(wěn)定度,以確保本振信號(hào)的純凈、穩(wěn)定。由于石英晶體具有相對(duì)較寬的阻抗動(dòng)態(tài)補(bǔ)償,此時(shí)對(duì)片式電感的L精度要求并不是首要指標(biāo),因此疊層片式電感和繞線片式電感多被用于VCO電路。
高頻濾波:低通濾波(LPF)常見于高頻電路的供電去耦回路,有效抑制高次諧波在供電回路的傳導(dǎo),額定電流和可靠性是首要關(guān)注參數(shù);而帶通濾波(BPF)則多用于高頻信號(hào)的耦合,或同時(shí)兼有阻抗匹配的作用。此時(shí)插入衰減要盡量小,L、Q是此時(shí)的重點(diǎn)參數(shù)。綜合比較,疊層片式電感最適合這種應(yīng)用。
評(píng)論