色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 汽車電子 > 設(shè)計應(yīng)用 > 交互多模型機動目標(biāo)跟蹤算法在車載毫米波雷達防追

          交互多模型機動目標(biāo)跟蹤算法在車載毫米波雷達防追

          作者: 時間:2012-03-28 來源:網(wǎng)絡(luò) 收藏

          1 引言

          本文引用地址:http://cafeforensic.com/article/197049.htm

          追尾碰撞是目前我國高速公路各類事故中較多的一類事故,占事故總數(shù)的33%左右。誘發(fā)的主要原因為:(1)駕駛員精力不集中,致使疏忽大意或措施不當(dāng);(2)疲勞駕駛,在高速公路上長時間高速行駛,加之道路景觀單一,駕駛員很容易疲勞,導(dǎo)致駕駛員判斷能力和操作準(zhǔn)確性下降;(3)異常天氣(如雨、雪、霧),能見度低,行車的安全距離不能保證,同時受到當(dāng)時路面條件的影響,制動效果難以保障;(4)車輛本身不能滿足高速公路行駛的性能需求。根據(jù)對沈大、合寧、廣深、西臨等高速公路交通事故的統(tǒng)計分析,交通事故類型如表1所示。

          1.jpg

          有關(guān)研究表明,若駕駛員能夠提早1 秒意識到有事故危險并采取相應(yīng)的措施,則90%的追尾事故和60%的正面碰撞事故都可以避免。美、英、德、日的不少汽車公司(如德國的奔馳、日本的三菱、馬自達、日產(chǎn)、本田及富土重工等公司)都開展了高速公路防追尾碰撞預(yù)警系統(tǒng)的研究。

          我國主要有清華大學(xué)、浙江大學(xué)、上海交通大學(xué)、吉林大學(xué)等高校和部分研究所在進行車輛主動防撞報警、輔助駕駛系統(tǒng)等相關(guān)技術(shù)研究。例如上海交通大學(xué)卓斌教授等研究開發(fā)了“人—車—路綜合環(huán)境下主動安全性模擬系統(tǒng)”,實現(xiàn)了行車環(huán)境數(shù)據(jù)采集、通訊和駕駛軟件仿真的編制。在現(xiàn)行的高速公路交通管理中,為保證行車安全,常依據(jù)公路工程技術(shù)標(biāo)準(zhǔn)中的行車視距要求,規(guī)定一定行駛速度下的車輛必須保持相應(yīng)的間距。那么如何準(zhǔn)確跟蹤車輛之間的距離信息,就成了汽車防追尾預(yù)警系統(tǒng)的關(guān)鍵。

          把交互(IMM)目標(biāo)跟蹤算法運用到汽車防追尾預(yù)警系統(tǒng)當(dāng)中,當(dāng)毫米波雷達存在一定測量誤差和噪聲時,目標(biāo)跟蹤算法能使毫米波雷達能夠準(zhǔn)確地探知前方車輛的運動狀態(tài),如車間距離、行駛速度等,從而提高駕駛員在高速公路上行駛安全性。

          2 汽車防追尾預(yù)警系統(tǒng)工作原理

          高速公路汽車防追尾預(yù)警系統(tǒng)由信息采集單元、信息處理單元和信息輸出裝置3 部分組成。信息采集單元通常由毫米波雷達、自車速度傳感器、轉(zhuǎn)向角傳感器、制動傳感器、加速踏板傳感器和路面情況選擇開關(guān)等組成;信息處理單元主要為中央處理器;信息輸出裝置包括液晶顯示屏、報警蜂鳴器、報警指示燈等,圖1 是雷達防追尾預(yù)警系統(tǒng)組成方框圖。

          11.jpg

          信息采集單元不斷地采集相關(guān)信息,利用毫米波雷達獲得前方目標(biāo)車輛的運動信息,如車間距離、相對速度;利用自車傳感系統(tǒng)獲得自車運行狀態(tài)信息,如自車速度、有無轉(zhuǎn)向、有無制動等,并將此信息傳送至信息處理單元。信息處理單元根據(jù)自車速度、相對速度以及所建立的安全距離計算模型,計算出當(dāng)前應(yīng)保持的安全距離并與實測車間距離相比較。若實測車間距離大于提醒報警距離,則進入下一工作循環(huán);若實測車間距離小于提醒報警距離,則進行一次報警,提醒駕駛員松油門并做好剎車準(zhǔn)備;當(dāng)實測車間距離小于危險報警距離,則進行二次報警,促使駕駛員立即制動,以避免追尾事故的發(fā)生。液晶顯示屏用于顯示兩車間實際距離及相對速度,報警蜂鳴器和報警指示燈用于提供聲音報警和指示燈報警,及時的報警可以有效地提醒駕駛員,促使其采取合適的應(yīng)對措施。

          汽車在道路上行駛時,經(jīng)常要進行加速、減速和轉(zhuǎn)彎,其運動狀態(tài)是不斷改變的。行駛中的汽車所處的道路環(huán)境是相當(dāng)復(fù)雜的,而安裝車載毫米波雷達的汽車本身也是不時地處于狀態(tài)之中,因此車載雷達所探測的目標(biāo)也是在不停的變化當(dāng)中,導(dǎo)致所測兩汽車之間的距離數(shù)據(jù)存在一定測量誤差和噪聲,就會使汽車防追尾預(yù)警系統(tǒng)產(chǎn)生虛警或漏警。過高虛警率的雷達不但不能減輕駕駛者的工作負(fù)擔(dān),反而會造成駕駛者精神高度緊張,起到相反的效果。因此,采用合適的目標(biāo)跟蹤算法,準(zhǔn)確地跟蹤自車前面的車輛目標(biāo)的狀態(tài)、及時估計行車的危險程度是車載雷達測距系統(tǒng)的一項主要任務(wù)。

          3 交互機動車輛跟蹤算法

          交互多模算法是Blom和Bar-Shalom在基礎(chǔ)上提出的,是在廣義偽貝葉斯算法基礎(chǔ)上,以卡爾曼濾波為出發(fā)點,提出的一種具有馬爾可夫切換系數(shù)的交互式多模型算法,其中多種模型并行工作,目標(biāo)狀態(tài)估計是多個濾波器交互作用的結(jié)果。該算法不需要機動檢測,同時達到了全面自適應(yīng)能力。IMM算法的基本思想是在每一時刻,假設(shè)某個模型在現(xiàn)在時刻有效的條件下,通過混合前一時刻所有濾波器的狀態(tài)估計值來獲得與這個特定模型匹配的濾波器的初始條件;然后對每個模型并行實現(xiàn)正規(guī)濾波(預(yù)測與修正)步驟;最后,以模型匹配似然函數(shù)為基礎(chǔ)更新模型概率,并組合所有濾波器修正后的狀態(tài)估計值(加權(quán)和)以得到狀態(tài)估計。一個模型有效的概率在狀態(tài)估值和協(xié)方差的加權(quán)綜合計算中有重要作用。IMM的設(shè)計參數(shù)為:不同匹配和結(jié)構(gòu)的設(shè)置模型;不同模型的處理噪聲密度(一般來講,非機動模型具有低水平測量噪聲,機動模型具有較高水平的噪聲);模型之間的切換結(jié)構(gòu)和轉(zhuǎn)移概率。與其他的機動目標(biāo)的跟蹤算法相比,比如辛格(Singer)算法、輸入估計(IE)算法、變維濾波(VD)算法等,交互多模(IMM)算法的優(yōu)點是它不需要機動檢測器監(jiān)視機動[10],從而不會產(chǎn)生因模型在機動與非機動之間切換而帶來的誤差。其算法原理如下:

          假定有r 個模型:

          01.jpg

          其中X(k)為目標(biāo)狀態(tài)向量,Aj為狀態(tài)轉(zhuǎn)移矩陣,Gj為系統(tǒng)噪聲作用矩陣,Wj(k)是均值為零,協(xié)方差矩陣為Qj的白噪聲序列。

          可用一個馬爾可夫鏈來控制這些模型之間的轉(zhuǎn)換,馬爾可夫鏈的轉(zhuǎn)移概率矩陣為:

          02.jpg

          其中Z(k)為量測向量,H為觀測矩陣,V(k)為量測噪聲,已知其方差為R(k)。W(k)和V(k)是零均值且相互獨立。

          IMM算法可歸納如下4 個步驟。

          步驟1 輸入交互:

          根據(jù)兩模型(k-l)時刻的濾波值和模型概率,計算交互混合后的濾波初始值,包括模型1 的濾波初始值:濾波估計值X 01

          (k - 1)和估計協(xié)方差μ1(k - 1);模型2 的濾波初始值:濾波估計值X 02

          (k - 1)和估計誤差協(xié)方差P02

          (k - 1)。設(shè)系統(tǒng)在(k-1)時刻模型1 概率為μ1(k - 1),濾波值X1

          (k - 1),估計誤差協(xié)方差為P2(k - 1)。模型2 的概率為μ2(k - 1),濾波值為X 2

          (k - 1),系統(tǒng)估計誤差協(xié)方差為P2(k - 1)。則進一步推廣到r 個模型,交互后r模型的濾波初始值為:

          03.jpg

          步驟2 模型條件濾波:

          對應(yīng)于模型Mj(k),以X 0j

          (k - 1|k - 1),P0j(k - 1|k - 1)及Z(k)作為輸入進行卡爾曼濾波。

          卡爾曼預(yù)測方程:

          07.jpg

          i = 1rΛj(k)cj_,而Λj(k)為觀測Z(k)的似然函數(shù):

          013.jpg

          圖2 為IMM算法結(jié)構(gòu)原理圖

          22.jpg

          4 車輛運動模型分析與IMM算法跟蹤仿真

          試驗設(shè)計:考慮兩輛車在道路上同向行駛,在0~10 s 時,兩車均保持勻速直線運動,由安裝在后車上的車載毫米波雷達檢測出與前車的距離為100 m,相對速度為-3 m/s,方位角2°。

          在10~15 s 時,前車向右偏轉(zhuǎn),與后車的相對角加速度為1° s2。

          后車加速,與前車的縱向相對加速度為a = -1.8 m/s2。雷達的掃描周期為T=0.1 s,系統(tǒng)噪聲為σα = 0.3 m/s,σβ = 0.3°/s。量測誤差為σ1 = 1 mσ2 = 0.5 m/sσ3 = 0.2°/s。

          車輛勻速直線運動模型:

          017.jpg

          0177.jpg

          采用蒙特卡洛方法對跟蹤濾波器進行仿真分析,仿真次數(shù)為400 次。以下運用Matlab7.0 仿真的結(jié)果。

          由圖3~圖6 仿真結(jié)果表明,該算法能夠有效地跟蹤前方車輛的運動信息,并且誤差較小,精度較高。

          33.jpg

          44.jpg

          55.jpg

          66.jpg

          5 總結(jié)

          重點研究了交互多模型機動目標(biāo)跟蹤算法在車載毫米波雷達防追尾預(yù)警系統(tǒng)中的應(yīng)用,介紹機動目標(biāo)跟蹤算法原理和步驟,并以高速公路上行駛的汽車為對象進行防真,結(jié)果表明算法具有結(jié)構(gòu)簡單、運算量小、精度較高的優(yōu)點,能夠提高車載雷達防追尾預(yù)警系統(tǒng)的使用效率,從而提高車輛駕駛的安全性,具有一定的應(yīng)用價值。

          加速度計相關(guān)文章:加速度計原理


          關(guān)鍵詞: 多模型 車載 機動 毫米波雷達

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉