色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 汽車電子 > 設計應用 > 汽車應用中磁阻傳感器系統(tǒng)的建模和仿真

          汽車應用中磁阻傳感器系統(tǒng)的建模和仿真

          作者: 時間:2011-03-25 來源:網絡 收藏

          磁阻效應支持汽車內的多種傳感器應用。主要用來測量機械的速度和角度。這樣,就成為電氣元件、磁性元件和機械元件所組成的復雜的一部分。因為所有元件都會影響的反應,所以在規(guī)劃系統(tǒng)及其操作時要非常重視對整個系統(tǒng)的仿真。下面重點討論這種系統(tǒng)的。

          本文引用地址:http://cafeforensic.com/article/197484.htm

            電子技術的應用日益廣泛,對汽車的發(fā)展具有決定性的促進作用。未來的進一步發(fā)展也會在很大程度上由不斷創(chuàng)新的電子元件驅動。傳感器技術可檢測車輛及其周圍環(huán)境條件,因此具有特殊意義。有多種傳感器系統(tǒng)可用于此類目的,例如加速度傳感器、溫度傳感器或轉矩傳感器等。磁場測量傳感器在汽車內尤其常見,主要用于機械變量的非接觸式檢測。通常這種傳感器通過霍爾元件,或者基于各向異性磁阻 (AMR) 效應實現(xiàn)。與使用霍爾效應的解決方案相比,AMR 傳感器有許多優(yōu)點,例如抖動更少、靈敏度更高。但在提高準確性或降低整體系統(tǒng)成本方面,二者不分伯仲。除了在電子羅盤中利用測量地球磁場之外,尤其是借助磁場指示機械系統(tǒng)的運動和位置時,可使用磁阻傳感器確定角度和速度。防滑系統(tǒng)、引擎和傳送控制都需要這種數(shù)據(jù)。產生磁場的永磁體的機械設計和選擇會在很大程度上影響測量數(shù)據(jù)的獲取。因此,在部署整個系統(tǒng)之前使用仿真技術進行深入分析非常重要,以確保達到目標功能并降低成本。因此,在前期開發(fā)過程中建立系統(tǒng)模型,之后用于支持后續(xù)產品的開發(fā),對于解決設計過程中產生的這類問題也能發(fā)揮重要作用。下文將探討新型速度傳感器的整體系統(tǒng)。

            

            圖 1 AMR 傳感器系統(tǒng)包含兩個封裝

            

            圖 2 各向異性磁阻效應

            信號檢測

            現(xiàn)代傳感器系統(tǒng)主要由兩個元件組成 —基本傳感器和信號處理專用集成電路 (ASIC)(圖 1)?,F(xiàn)已證明,后來由 Lord Klevin 于 1857 年發(fā)現(xiàn)的各向異性磁阻效應特別適用于檢測磁場。首先考慮通常具有多種磁疇結構的鐵磁性材料。這些稱之為韋斯磁疇的結構,其內部磁化的方向彼此不同。如果將這種材料平鋪為一薄層,那么磁化矢量處于材料層平面方向。另外,可較精確地假設只存在一個磁疇。當這種元件暴露于外部磁場中時,后者會改變內部磁化矢量的方向。如果同時一股電流通過該元件,就會產生電阻(圖 2),這取決于電流和磁化之間的角度。當電流和磁化方向彼此成直角時,電阻最小,當二者平行時,電阻最大。電阻變化的大小取決于材料。鐵磁性材料的性質也決定對溫度的依賴性。電阻最大變化為 2.2% 并且對溫度變化反應良好的最佳合金是 81% 的鎳和 19% 的鐵組成的合金。恩智浦所有傳感器系統(tǒng)中的基本傳感器都采用這種強磁鐵鎳合金。在惠斯登電橋電路中單獨配置幾個 AMR 電阻,以增強輸出信號并改善溫度反應特性。此電路也可在制造過程中進行微調。圖 3 顯示如何在裸片上配置 AMR 元件。

            確定速度的裝置多半由兩個組件組成:編碼器輪和傳感器系統(tǒng)。編碼器輪可以是主動式或被動式。主動輪已磁化,因此 MR 傳感器可檢測北極和南極之間的變化。如果是被動輪,則由一種齒狀結構代替磁化。如圖 1 所示,傳感器頭上也必須有一塊用于產生磁場的永磁體。接下來,我們只討論因公差極小而著稱的被動編碼器輪。當傳感器對稱地面對一個齒或者被動輪兩齒之間的空隙時,這不會使 AMR 元件的磁化矢量產生任何偏斜。忽略外部噪聲場并考慮橋電路時,輸出信號獲得零值。然而,如果傳感器頭處于齒邊緣前面,則磁輸入信號達到極值。齒/空隙或空隙/齒切換類型的函數(shù)結果與磁輸入信號正弦曲線的最小值或最大值非常接近。

            信號處理

            為了確定速度,將磁輸入信號編碼處理為電脈沖序列,而且通常通過 7/14 mA 協(xié)議傳送。在最簡單的情況下,可使用比較器產生脈沖序列。通常會向比較器電路添加磁滯以消除低噪聲的影響。然而,這種施密特觸發(fā)器在噪聲水平較高的條件下不能確保其功能性。例如,傳感器頭和編碼器輪之間空隙出現(xiàn)顯著波動會導致磁輸入信號振幅發(fā)生波動。如果振幅變得很小,甚至不再超過或低于磁滯臨界值,則不管編碼器輪的位置如何,輸出信號都保持其有效工作時的最后狀態(tài)。在檢測 ABS 系統(tǒng)中的轉速時,傳感器和編碼器輪之間的距離可能會出現(xiàn)這種變化。當存在負載變化(例如突然轉向動作),橫向作用于輪上的離心力會在輪軸上產生彎曲力矩。這將改變安裝在與傳感器相關的軸上的編碼器輪的位置,這些傳感器是與輪懸架相結合的。

            磁位移也會影響系統(tǒng)的正常運轉。例如,噪聲場可使實際測量信號加強或減弱,致使施密特觸發(fā)器的臨界值被高估或低估。然而,位移不僅是由外部場引起的。被動輪極高的速度可使輪中產生渦流,而這又會產生磁噪聲場。所產生的位移會影響操作的可靠性。

            為消除此噪聲對輸出信號的影響,另一封裝中裝入了信號處理專用集成電路(ASIC)。后者也包含一個線路驅動器,以便為信號處理和高電壓接口提供電源電壓(圖 1)。圖 4 所示為信號處理架構。用于故障排除的中心元件為包括調式放大器、偏移抵消電路和智能比較器。根據(jù)傳感器和編碼器輪之間的距離,可調式放大器可以與信號級匹配。對于偏移抵消電路,有一種控制系統(tǒng)(與高通濾波器不同)可消除偏移,同時將系統(tǒng)頻率保持為 0?Hz。否則,就不可能檢測到停止不動的編碼器輪。智能比較器的臨界值是可變的,并且可設置,使磁滯處于信號振幅的 20% 和 45% 之間。這可確保充分抑制噪聲,而且振幅突降達 50% 也不會影響系統(tǒng)的正常運轉。模擬前端的個別組件控制則通過數(shù)字接口實現(xiàn)。所述系統(tǒng)均利用仿真技術開發(fā)和驗證。下文將概略介紹系統(tǒng)開發(fā),同時闡述如何使用模型來改進設計。

            

            圖 3 裸片上的 AMR 元件配置

            

            圖 4 現(xiàn)代速度傳感器的信號處理原理


          上一頁 1 2 3 下一頁

          評論


          相關推薦

          技術專區(qū)

          關閉