色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 消費(fèi)電子 > 設(shè)計(jì)應(yīng)用 > 機(jī)器學(xué)習(xí):決策樹--python

          機(jī)器學(xué)習(xí):決策樹--python

          作者: 時間:2018-07-24 來源:網(wǎng)絡(luò) 收藏

          今天,我們介紹機(jī)器學(xué)習(xí)里比較常用的一種分類算法,決策樹。決策樹是對人類認(rèn)知識別的一種模擬,給你一堆看似雜亂無章的數(shù)據(jù),如何用盡可能少的特征,對這些數(shù)據(jù)進(jìn)行有效的分類。

          本文引用地址:http://cafeforensic.com/article/201807/383543.htm

          決策樹借助了一種層級分類的概念,每一次都選擇一個區(qū)分性最好的特征進(jìn)行分類,對于可以直接給出標(biāo)簽 label 的數(shù)據(jù),可能最初選擇的幾個特征就能很好地進(jìn)行區(qū)分,有些數(shù)據(jù)可能需要更多的特征,所以決策樹的深度也就表示了你需要選擇的幾種特征。

          在進(jìn)行特征選擇的時候,常常需要借助信息論的概念,利用最大熵原則。

          決策樹一般是用來對離散數(shù)據(jù)進(jìn)行分類的,對于連續(xù)數(shù)據(jù),可以事先對其離散化。

          在介紹決策樹之前,我們先簡單的介紹一下信息熵,我們知道,熵的定義為:

          我們先構(gòu)造一些簡單的數(shù)據(jù):

          from sklearn import datasets

          import numpy as np

          import matplotlib.pyplot as plt

          import math

          import operator

          def Create_data():

          dataset = [[1, 1, 'yes'],

          [1, 1, 'yes'],

          [1, 0, 'no'],

          [0, 1, 'no'],

          [0, 1, 'no'],

          [3, 0, 'maybe']]

          feat_name = ['no surfacing', 'flippers']

          return dataset, feat_name

          然后定義一個計(jì)算熵的函數(shù):

          def Cal_entrpy(dataset):

          n_sample = len(dataset)

          n_label = {}

          for featvec in dataset:

          current_label = featvec[-1]

          if current_label not in n_label.keys():

          n_label[current_label] = 0

          n_label[current_label] += 1

          shannonEnt = 0.0

          for key in n_label:

          prob = float(n_label[key]) / n_sample

          shannonEnt -= prob * math.log(prob, 2)

          return shannonEnt

          要注意的是,熵越大,說明數(shù)據(jù)的類別越分散,越呈現(xiàn)某種無序的狀態(tài)。

          下面再定義一個拆分?jǐn)?shù)據(jù)集的函數(shù):

          def Split_dataset(dataset, axis, value):

          retDataSet = []

          for featVec in dataset:

          if featVec[axis] == value:

          reducedFeatVec = featVec[:axis]

          reducedFeatVec.extend(featVec[axis+1 :])

          retDataSet.append(reducedFeatVec)

          return retDataSet

          結(jié)合前面的幾個函數(shù),我們可以構(gòu)造一個特征選擇的函數(shù):

          def Choose_feature(dataset):

          num_sample = len(dataset)

          num_feature = len(dataset[0]) - 1

          baseEntrpy = Cal_entrpy(dataset)

          best_Infogain = 0.0

          bestFeat = -1

          for i in range (num_feature):

          featlist = [example[i] for example in dataset]

          uniquValus = set(featlist)

          newEntrpy = 0.0

          for value in uniquValus:

          subData = Split_dataset(dataset, i, value)

          prob = len(subData) / float(num_sample)

          newEntrpy += prob * Cal_entrpy(subData)

          info_gain = baseEntrpy - newEntrpy

          if (info_gain > best_Infogain):

          best_Infogain = info_gain

          bestFeat = i

          return bestFeat

          然后再構(gòu)造一個投票及計(jì)票的函數(shù)

          def Major_cnt(classlist):

          class_num = {}

          for vote in classlist:

          if vote not in class_num.keys():

          class_num[vote] = 0

          class_num[vote] += 1

          Sort_K = sorted(class_num.iteritems(),

          key = operator.itemgetter(1), reverse=True)

          return Sort_K[0][0]

          有了這些,就可以構(gòu)造我們需要的決策樹了:

          def Create_tree(dataset, featName):

          classlist = [example[-1] for example in dataset]

          if classlist.count(classlist[0]) == len(classlist):

          return classlist[0]

          if len(dataset[0]) == 1:

          return Major_cnt(classlist)

          bestFeat = Choose_feature(dataset)

          bestFeatName = featName[bestFeat]

          myTree = {bestFeatName: {}}

          del(featName[bestFeat])

          featValues = [example[bestFeat] for example in dataset]

          uniqueVals = set(featValues)

          for value in uniqueVals:

          subLabels = featName[:]

          myTree[bestFeatName][value] = Create_tree(Split_dataset

          (dataset, bestFeat, value), subLabels)

          return myTree

          def Get_numleafs(myTree):

          numLeafs = 0

          firstStr = myTree.keys()[0]

          secondDict = myTree[firstStr]

          for key in secondDict.keys():

          if type(secondDict[key]).__name__ == 'dict' :

          numLeafs += Get_numleafs(secondDict[key])

          else:

          numLeafs += 1

          return numLeafs

          def Get_treedepth(myTree):

          max_depth = 0

          firstStr = myTree.keys()[0]

          secondDict = myTree[firstStr]

          for key in secondDict.keys():

          if type(secondDict[key]).__name__ == 'dict' :

          this_depth = 1 + Get_treedepth(secondDict[key])

          else:

          this_depth = 1

          if this_depth > max_depth:

          max_depth = this_depth

          return max_depth

          我們也可以把決策樹繪制出來:

          def Plot_node(nodeTxt, centerPt, parentPt, nodeType):

          Create_plot.ax1.annotate(nodeTxt, xy=parentPt,

          xycoords='axes fraction',

          xytext=centerPt, textcoords='axes fraction',

          va=center, ha=center, bbox=nodeType, arrowprops=arrow_args)

          def Plot_tree(myTree, parentPt, nodeTxt):

          numLeafs = Get_numleafs(myTree)

          Get_treedepth(myTree)

          firstStr = myTree.keys()[0]

          cntrPt = (Plot_tree.xOff + (1.0 + float(numLeafs))/2.0/Plot_tree.totalW,

          Plot_tree.yOff)

          Plot_midtext(cntrPt, parentPt, nodeTxt)

          Plot_node(firstStr, cntrPt, parentPt, decisionNode)

          secondDict = myTree[firstStr]

          Plot_tree.yOff = Plot_tree.yOff - 1.0/Plot_tree.totalD

          for key in secondDict.keys():

          if type(secondDict[key]).__name__=='dict':

          Plot_tree(secondDict[key],cntrPt,str(key))

          else:

          Plot_tree.xOff = Plot_tree.xOff + 1.0/Plot_tree.totalW

          Plot_node(secondDict[key], (Plot_tree.xOff, Plot_tree.yOff),

          cntrPt, leafNode)

          Plot_midtext((Plot_tree.xOff, Plot_tree.yOff), cntrPt, str(key))

          Plot_tree.yOff = Plot_tree.yOff + 1.0/Plot_tree.totalD

          def Create_plot (myTree):

          fig = plt.figure(1, facecolor = 'white')

          fig.clf()

          axprops = dict(xticks=[], yticks=[])

          Create_plot.ax1 = plt.subplot(111, frameon=False, **axprops)

          Plot_tree.totalW = float(Get_numleafs(myTree))

          Plot_tree.totalD = float(Get_treedepth(myTree))

          Plot_tree.xOff = -0.5/Plot_tree.totalW; Plot_tree.yOff = 1.0;

          Plot_tree(myTree, (0.5,1.0), '')

          plt.show()

          def Plot_midtext(cntrPt, parentPt, txtString):

          xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]

          yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]

          Create_plot.ax1.text(xMid, yMid, txtString)

          def Classify(myTree, featLabels, testVec):

          firstStr = myTree.keys()[0]

          secondDict = myTree[firstStr]

          featIndex = featLabels.index(firstStr)

          for key in secondDict.keys():

          if testVec[featIndex] == key:

          if type(secondDict[key]).__name__ == 'dict' :

          classLabel = Classify(secondDict[key],featLabels,testVec)

          else:

          classLabel = secondDict[key]

          return classLabel

          最后,可以測試我們的構(gòu)造的決策樹分類器:

          decisionNode = dict(boxstyle=sawtooth, fc=0.8)

          leafNode = dict(boxstyle=round4, fc=0.8)

          arrow_args = dict(arrowstyle=-)

          myData, featName = Create_data()

          S_entrpy = Cal_entrpy(myData)

          new_data = Split_dataset(myData, 0, 1)

          best_feat = Choose_feature(myData)

          myTree = Create_tree(myData, featName[:])

          num_leafs = Get_numleafs(myTree)

          depth = Get_treedepth(myTree)

          Create_plot(myTree)

          predict_label = Classify(myTree, featName, [1, 0])

          print(the predict label is: , predict_label)

          print(the decision tree is: , myTree)

          print(the best feature index is: , best_feat)

          print(the new dataset: , new_data)

          print(the original dataset: , myData)

          print(the feature names are: , featName)

          print(the entrpy is:, S_entrpy)

          print(the number of leafs is: , num_leafs)

          print(the dpeth is: , depth)

          print(All is well.)

          構(gòu)造的決策樹最后如下所示:



          關(guān)鍵詞:

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉