色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 3D圖形芯片的算法原理是什么樣的?

          3D圖形芯片的算法原理是什么樣的?

          作者: 時間:2018-08-08 來源:網(wǎng)絡(luò) 收藏

          一、引言

          本文引用地址:http://cafeforensic.com/article/201808/385879.htm

          芯片的處理對象是多邊形表示的物體。用多邊形表示物體有兩個優(yōu)點:首先是直接(盡管繁瑣),多邊形表示的物體其表面的分段線性特征除輪廓外可以通過明暗處理(shading)技術(shù)消除;其次是僅存儲多邊形頂點的幾何信息,多邊形內(nèi)部每個象素的明暗顏色計算所需的信息由這些頂點信息插值而來,這正是易于用圖形硬件支持的快速明暗處理技術(shù)。支持多邊形繪制的圖形硬件同樣也可以繪制由雙三次曲面片表示的物體,通過對這種物體的表面進(jìn)行三角剖分,用逼近的三角形網(wǎng)格代替原物體的曲面表示就可以做到這一點。當(dāng)然,用多邊形表示物體也有其缺點,如增加了紋理映射和陰影生成的難度,當(dāng)需要詳細(xì)表示復(fù)雜物體時所需的三角形數(shù)量將變得非常龐大。

          將多邊形表示的物體顯示到計算機屏幕上,這一過程涉及物體在計算機內(nèi)部的表示方式即物體的數(shù)據(jù)結(jié)構(gòu),由物體組成的場景的組織結(jié)構(gòu),物體從場景到屏幕空間要經(jīng)過的一系列變換,以及產(chǎn)生最終屏幕圖象要經(jīng)過的一系列光柵化處理。這些方面都涉及到特定的處理算法,相應(yīng)的算法又有許多不同的變種。下面僅就芯片涉及的圖形處理過程及相關(guān)算法做一簡單分析介紹,這些是理解圖形處理及圖形硬件的基礎(chǔ)。

          二、3D物體的表示法

          具有復(fù)雜外形的物體其表面可以由多邊形面片來近似表示。以圖1的圓柱為例,其柱面可以由2N個三角形近似,其兩端可以由兩個N邊形來近似。多邊形模型在其輪廓上的分段線性特征是這一表示法主要的視覺缺陷,改進(jìn)的唯一途徑是增加多邊形的分辨率。對于一個復(fù)雜形體來說,為了充分表示其細(xì)節(jié),常常要用到十萬個以上的多邊形。這將耗費許多數(shù)據(jù)庫訪問時間和繪制時間。當(dāng)將多邊形模型進(jìn)行放大處理時,會產(chǎn)生連接問題。這就是所謂的“幾何走樣”。物體的多邊形表示既可以通過交互設(shè)計人工提取,也可以通過激光掃描設(shè)備得到??傊?,多邊形表示的物體并不特別適合于交互操作或做自由的形狀改變。當(dāng)改變物體的形狀時很難保證多邊形表示的完整性得到保持。

          對多邊形明暗著色所需要的信息存儲在一個分層的數(shù)據(jù)結(jié)構(gòu)中,每一個物體表面由指向多邊形表的指針定義,該多邊形表包含了近似該表面的一組多邊形,每一個多邊形由指向頂點表的指針定義,頂點表包含了每個多邊形的所有頂點。具體來說需要為每個多邊形存儲以下信息:

          1)多邊形的頂點表,每一個頂點是一個三維坐標(biāo),該坐標(biāo)定義在創(chuàng)建該物體時的局部坐標(biāo)系中。

          2)頂點的法向量表,這是明暗處理算法所要求的信息。向量由同一局部坐標(biāo)系中的三分量表示。

          3)多邊形的法向量,它是包含該多邊形的平面的真正的幾何法向量。這是背面刪除操作所需要的信息。

          繪制多邊形物體的傳統(tǒng)方法是將多邊形作為獨立的繪制實體,這樣多邊形之間的共享邊就要被處理兩次。為避免這種情況,可采用基于邊的繪制方法,這時多邊形的表示是基于多邊形的邊而不是多邊形本身。基于邊的方法意味著繪制過程的組織要采用基于掃描線的算法,基于掃描線的算法將同時處理與當(dāng)前掃描線相交的所有多邊形。這時存儲器中能存儲的可被同時處理的多邊形的最大數(shù)目將成為可繪制的場景復(fù)雜度的上限。使用全屏Z-buffer并將掃描線算法局限在物體所包含的多邊形上就可以解決這一問題。

          三、坐標(biāo)系統(tǒng)

          繪制過程的幾何處理部分可被看成應(yīng)用一系列的坐標(biāo)變換將物體數(shù)據(jù)庫變換到一系列的坐標(biāo)系下,這些坐標(biāo)系對所有繪制系統(tǒng)都是公用的,是理解3D圖形學(xué)的基礎(chǔ)。用計算機生成圖象的一系列基本操作與繪制過程要經(jīng)歷的一系列空間即坐標(biāo)系有關(guān)。隨著繪制過程的進(jìn)行處理將從一個空間進(jìn)入下一個空間。已完整地建立起描述這些變換的方法。在對物體實施變換時希望對頂點和頂點的法向量使用相同的變換矩陣。事實上,當(dāng)變換在所有方向并不相同時,頂點法向量必須采用不同的變換矩陣。由于單位法向量經(jīng)過變換之后其長度不一定仍保持不變,因而必須對其進(jìn)行重新單位化處理(單位法向量是光照計算所要求的)。

          1.局部坐標(biāo)系(局部空間)

          為了建模和進(jìn)行局部變換的方便可選擇被建模物體之內(nèi)或附近的某一點作為局部坐標(biāo)系的原點。例如可選擇一個立方體的某一頂點作為坐標(biāo)原點,三個坐標(biāo)軸即是與該頂點相連的立方體的三條邊。在局部坐標(biāo)系選定之后,物體各頂點的局部坐標(biāo)以及相對于該局部坐標(biāo)系的各頂點的法向量和物體上多邊形的法向量就可以被提取并存儲起來。

          2.世界坐標(biāo)系(世界空間)

          當(dāng)每一個物體在其局部坐標(biāo)系中被建立起來之后,就需要將其放置到將要繪制的場景之中。組成場景的每個物體都有自己獨立的局部坐標(biāo)系。整個場景的坐標(biāo)系就是所謂的世界坐標(biāo)系。場景中的所有物體都必須從自己的局部坐標(biāo)系中變換到世界坐標(biāo)系中以定義場景中物體之間的空間相對關(guān)系。如果一個物體在場景中被定義為運動的,則必須為該物體定義一個隨時間變化的變換序列以便在每一幀將該物體變換到世界坐標(biāo)系中的不同位置。場景中的光源也在世界坐標(biāo)系中定義。如果光照計算是在世界空間中進(jìn)行,則對物體法向量的變換到此為止。對物體表面屬性如紋理、顏色等的定義和調(diào)整也在世界空間中進(jìn)行。

          3.眼睛坐標(biāo)系、相機坐標(biāo)系或觀察坐標(biāo)系(眼睛空間)

          眼睛坐標(biāo)系統(tǒng)是用來建立對世界空間進(jìn)行觀察時的觀察參數(shù)和觀察范圍的。在圖形學(xué)中通常用假想的相機來輔助對觀察系統(tǒng)的理解。一個假想的相機可以以任意方向放置在世界空間的任何位置,膠片平面在圖形學(xué)中就是觀察平面,也就是場景將投影到其上的平面。建立一個普遍適用的觀察空間相當(dāng)繁瑣,在多數(shù)情況下是對眼睛坐標(biāo)空間做許多限制。一個最小的實用系統(tǒng)可以這樣建立,首先要求眼睛坐標(biāo)系的原點和投影中心是世界坐標(biāo)系中的同一個坐標(biāo)點;其次要求觀察平面的法向量和觀察方向在眼睛空間中與Z坐標(biāo)軸重合;最后,觀察方向必須是這樣的,當(dāng)相機朝著Z軸的正向時Z值的增加將遠(yuǎn)離眼睛的位置,同時在左手坐標(biāo)系的前提下,X 軸指向右,Y軸向上。滿足這一要求的系統(tǒng)就可以使假想的相機以任何觀察方向放置在世界坐標(biāo)空間中的任何位置。圖2 是有關(guān)坐標(biāo)系之間的關(guān)系。

          眼睛坐標(biāo)系是最適宜做背面刪除的空間。背面刪除操作是將背對觀察者的多邊形全部剔除,在場景中這些多邊形對于觀察者來說是不可見的。如果對一個凸物體做背面刪除,則可以完全解決其隱藏面問題。對于具有凹面的物體而言這一操作并不能解決隱藏面問題。背面刪除操作是通過計算多邊形所在平面的法向量與視線向量之間的夾角來決定該平面是否可見。如果這兩個向量的點積大于0,意味著其夾角小于90o 即該多邊形是可見的,否則為不可見。視線向量是從多邊形指向視點的向量。多邊形平面的法向量可通過其不共線的三個頂點計算而得。多邊形的法向量必須指向物體的外部,為保證這一點,多邊形的頂點必須以反時針方向(從多邊形外部看時)順序存儲。如圖3所示。


          上一頁 1 2 3 下一頁

          關(guān)鍵詞: 3D 圖形芯片 算法原理

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉