無速度傳感器矢量控制變頻系統(tǒng)研究
0 引言
本文引用地址:http://cafeforensic.com/article/201808/387554.htm矢量控制也稱磁場定向控制。它是上世紀(jì)70年代初由德國西門子公司F. Blaschke等人首先提出,以直流電動(dòng)機(jī)和交流電動(dòng)機(jī)比較的方法分析闡述了這一原理。作為異步電機(jī)控制的一種方式,矢量控制技術(shù)已成為高性能變頻調(diào)速系統(tǒng)的首選方案。隨著計(jì)算機(jī)技術(shù)飛速發(fā)展,功能強(qiáng)大的數(shù)字信號(hào)處理器(DSP)的廣泛應(yīng)用使得矢量控制逐漸走向了實(shí)用化。
在高性能的異步電機(jī)矢量控制系統(tǒng)中,轉(zhuǎn)速的閉環(huán)控制環(huán)節(jié)一般是必不可少的。通常,采用光電碼盤等速度傳感器來進(jìn)行轉(zhuǎn)速檢測,并反饋轉(zhuǎn)速信號(hào)。
但是,由于速度傳感器的安裝給系統(tǒng)帶來一些缺陷使得系統(tǒng)的成本大大增加;精度越高的碼盤價(jià)格也越貴;碼盤在電機(jī)軸上的安裝存在同心度的問題,安裝不當(dāng)將影響測速的精度;使電機(jī)軸的體積增大,而且給電機(jī)的維護(hù)帶來一定困難,在惡劣的環(huán)境下,碼盤工作的精度易受環(huán)境的影響。因此,越來越多的學(xué)者將眼光投向無速度傳感器控制系統(tǒng)的研究。
1 轉(zhuǎn)子磁場定向無速度傳感器矢量控制原理
1.1 系統(tǒng)矢量控制原理
所謂無速度傳感器控制系統(tǒng)就是取消了傳統(tǒng)的交流電機(jī)調(diào)速系統(tǒng)中的速度檢測裝置,通過檢測定子的電壓電流來間接估算電機(jī)運(yùn)行的實(shí)際轉(zhuǎn)速值,將該值作為轉(zhuǎn)速反饋信號(hào)。本系統(tǒng)采用電流與電壓相結(jié)合的轉(zhuǎn)子磁鏈估算模型以及基于異步電機(jī)數(shù)學(xué)模型的速度估算方法,可得轉(zhuǎn)子磁通位置角,并送至旋轉(zhuǎn)變換環(huán)節(jié)。用霍爾電流傳感器檢測三相輸出的兩相電流iA、iB,計(jì)算出第三相電流iC=-(iA+iB),從而獲得實(shí)時(shí)的輸出電流信號(hào),亦為電機(jī)上的電流信號(hào),為矢量控制的計(jì)算提供實(shí)時(shí)信號(hào)。由測得的電流經(jīng)矢量變換得到轉(zhuǎn)矩電流分量iT和勵(lì)磁電流分量iM,利用iMref-iM、iTref-iT所產(chǎn)生的電流誤差經(jīng)PI 控制器產(chǎn)生VMref、VTref ,經(jīng)旋轉(zhuǎn)變換后求出兩相輸出電壓VDref、VQref,進(jìn)而控制逆變器。圖1是其矢量控制系統(tǒng)框圖。
1.2 異步電機(jī)轉(zhuǎn)子磁場定向基本方程
如果規(guī)定MT 坐標(biāo)系的M 軸沿著轉(zhuǎn)子磁鏈鬃r的方向,則MT 坐標(biāo)系就沿轉(zhuǎn)子磁場定向,此時(shí)異步電機(jī)的電壓方程為
1.3 轉(zhuǎn)子磁鏈位置的估算
在轉(zhuǎn)子磁場定向的無速度傳感器的異步電機(jī)控制系統(tǒng)中,轉(zhuǎn)子磁鏈估算是至關(guān)重要的一環(huán)。如果轉(zhuǎn)子磁鏈估算不準(zhǔn)確,則轉(zhuǎn)子磁場定向控制系統(tǒng)的優(yōu)點(diǎn),即實(shí)現(xiàn)轉(zhuǎn)矩和磁通的解耦控制將無法實(shí)現(xiàn)。根據(jù)兩相旋轉(zhuǎn)坐標(biāo)系下異步電機(jī)的基本方程,可以得到電流型轉(zhuǎn)子磁鏈估算模型。
在低頻時(shí),式(7)和式(8)中的定子電壓值變小,定子電阻壓降的偏差對(duì)積分結(jié)果的影響增大,因此必須準(zhǔn)確檢測定子電阻,但是定子電阻會(huì)隨溫度變化,要十分準(zhǔn)確地檢測是比較困難的。而對(duì)于電流模型來說,電動(dòng)機(jī)在高速運(yùn)行時(shí),由于電機(jī)參數(shù)的偏差,容易引起磁通振蕩。所以,本系統(tǒng)將這兩種方法綜合在一起,以相互彌補(bǔ)高頻和低頻的不足。其運(yùn)算框圖如圖2所示。
1.4 轉(zhuǎn)速的估算
根據(jù)兩相靜止坐標(biāo)系下異步電機(jī)的基本方程,
評(píng)論