耐用性更高的新型溝槽型功率MOSFET
在線性模式供電的電子系統(tǒng)中,功率 MOSFET器件被廣泛用作壓控電阻器,電磁干擾 (EMI) 和系統(tǒng)總體成本是功率MOSFET的優(yōu)勢(shì)所在。
本文引用地址:http://cafeforensic.com/article/202205/434447.htm在線性模式工作時(shí),MOSFET必須在惡劣工作條件下工作,承受很高的漏極電流(ID)和漏源電壓 (VDS),然后還需處理很高的功率。這些器件必須滿足一些技術(shù)要求才能提高耐用性,還必須符合熱管理限制,才能避免熱失控。
意法半導(dǎo)體 (ST) 推出了一款采用先進(jìn)的 STPOWER STripFET F7制造技術(shù)和H2PAK 封裝的 100V功率 MOSFET。該器件改進(jìn)了需要高功率和高壓降的正向偏置安全工作區(qū) (FBSOA)操作的耐用性。
寬 SOA 安全工作區(qū)是 STripFET F7 技術(shù)優(yōu)化的結(jié)果。優(yōu)化內(nèi)容包括兩個(gè)方面:首先是調(diào)整柵極-源極電壓 (VGS),避免電流聚焦,其次是設(shè)置閾壓(VGS(th))和跨導(dǎo)(Gfs),降低熱耗散功率。因此,在更廣泛的SOA工作條件下,MOSFET保持熱性能穩(wěn)定。
新推出的STH200N10WF7-2 功率 MOSFET是為電池隔離和配電安全開關(guān)、浪涌電流限制器、電子保險(xiǎn)絲、線性驅(qū)動(dòng)電機(jī)控制器、負(fù)載開關(guān)和熱插拔應(yīng)用而量身定制。
在線性模式下的耐用性
與同級(jí)溝槽器件相比,新的寬SOA MOSFET (STH200N10WF7-2)的性能更好,因?yàn)樵谙嗤墓ぷ鳁l件下,電流處理能力更高,如圖 1 和圖 2 所示。
圖1 標(biāo)準(zhǔn)溝槽MOSFET的SOA圖
圖2 寬SOA溝槽MOSFET的SOA圖
雖然 20V標(biāo)準(zhǔn)溝槽 MOSFET 能夠耐受脈沖時(shí)間10ms 的2.5A 電流,但在相同條件下,新的寬 SOA的 STH200N10WF7-2可以處理 6.5A 電流。
性能改進(jìn)是技術(shù)優(yōu)化的結(jié)果。優(yōu)化的目的是確保電流曲線在高 VDS 時(shí)近乎平坦,以及電流限制隨時(shí)間變化的自我平衡能力,如圖 3 和 4所示[1]。
圖3 寬SOA MOSFET的測(cè)量輸出特性
圖4 漏極電流隨時(shí)間變化的穩(wěn)定性模擬圖
與標(biāo)準(zhǔn)溝槽 MOSFET 和市場(chǎng)上最好的競(jìng)品相比,寬 SOA MOSFET 在更廣泛的線性模式工作條件下表現(xiàn)出更優(yōu)異的熱穩(wěn)定性。
作為在設(shè)計(jì)和優(yōu)化之間權(quán)衡的結(jié)果,在柵源電壓(VGS) 較低時(shí),STH200N10WF7-2的電流增益較小,可以在線性模式工作時(shí)限制電流增加和熱失控,但是,在柵源電壓(VGS) 較高時(shí),該器件可以提高電流值,在開關(guān)條件下降低導(dǎo)通電阻(RDS(on)),如圖 5 所示。
圖5 傳導(dǎo)特性模擬
因?yàn)檫@個(gè)特性,在限制啟動(dòng)過程的線性模式浪涌電流脈沖后,寬 SOA 器件也可以在 PWM(脈沖寬度調(diào)制)模式下工作。
線性模式性能
漏極電流熱系數(shù) (TC)是決定功率 MOSFET 線性模式性能的關(guān)鍵參數(shù),定義如下:
其中ID是漏極電流,T 是器件的溫度。
該系數(shù)代表器件在高溫和高壓下自我平衡電流控制的能力,這是一個(gè)依賴于技術(shù)的參數(shù),與 MOSFET 的傳導(dǎo)特性及其隨溫度變化的趨勢(shì)有關(guān)(圖 6)。
圖6 功率 MOSFET 的傳導(dǎo)特性(在不同溫度下)
三條傳導(dǎo)曲線相交于一個(gè)交叉點(diǎn),這個(gè)點(diǎn)被稱為零溫度系數(shù)ZTC:
■ 若VGS=VGS(ZTC),則器件電流和溫度保持穩(wěn)定;
■ 若VGS>VGS(ZTC),隨著器件溫度升高,漏極電流逐漸減小,達(dá)到熱穩(wěn)定條件;
■ 反之亦然,若VGS<VGS(ZTC),隨著器件溫度升高,漏極電流繼續(xù)增加,這是因?yàn)殚撝惦妷狠^低,其對(duì)溫度的系數(shù)為負(fù)。因此,當(dāng)芯片的局部區(qū)域變得比相鄰區(qū)域更熱時(shí),它會(huì)傳導(dǎo)更多的漏極電流,從而產(chǎn)生更多的熱量,如果沒有設(shè)置適當(dāng)?shù)南拗茥l件,將導(dǎo)致器件失效(熱失控)[1]。
下圖(圖 7)所示是標(biāo)準(zhǔn) STripFET F7 MOSFET 和新型寬 SOA STH200N10WF7-2之間的熱系數(shù)比較。
圖7 標(biāo)準(zhǔn)器件和新MOSFET在不同VDS時(shí)的熱系數(shù)
當(dāng)TC為零或負(fù)值時(shí),隨著溫度的升高,漏極電流減小,器件工作在熱穩(wěn)定條件下。然而,即使TC為正,該器件也可以正常工作:這取決于整個(gè)裸片散去單位面積熱量的熱處理能力。如果隨著時(shí)間推移產(chǎn)生的熱量可以完全從器件中散掉,那么功率 MOSFET 就可以在安全的條件下工作[2]。
“低 ID和高VDS”區(qū)域是線性模式器件SOA中最不安全的區(qū)域:事實(shí)上,低 ID 區(qū)域通常是功率 MOSFET 具有最高正熱系數(shù)的區(qū)域,同時(shí)增加VDS,功率和熱量會(huì)大幅提高[2]。
然后,在熱系數(shù)曲線固定下來后,器件在高VDS電壓時(shí)可能會(huì)變得更加不穩(wěn)定。熱不穩(wěn)定條件也可以寫成:
其中 TC 是熱系數(shù),Rth 是熱阻。
芯片上的溫度在不同 VDS電壓時(shí)的分布情況如圖 8 所示。
圖8 在VDS=10V時(shí)的芯片溫度(左圖)、在VDS=15V時(shí)的芯片溫度(中圖)和 在VDS= 20V時(shí)的芯片溫度(右圖)
在VDS電壓從 10V 提高到 20V后,裸片的溫度分布變得不太均勻,并且在非常小的區(qū)域有清晰的熱集中現(xiàn)象,這個(gè)區(qū)域的溫度比相鄰區(qū)域上升更快:在這里,柵極-源極閾壓 (VGS(th)) 局部降低,再加上漏極電流變大(這會(huì)產(chǎn)生更多的熱量,導(dǎo)致VGS(th)閾壓進(jìn)一步降低),可能引起熱失控和器件失效。當(dāng) VDS 增加時(shí),因?yàn)殡娏骷性谝粋€(gè)小區(qū)域,器件的有效面積減小,熱阻將會(huì)變大,器件可以安全處理的功率水平將會(huì)降低(圖 9)。
圖9 當(dāng)VDS較高時(shí)熱阻變大
半導(dǎo)體封裝的熱阻(Rth)是衡量材料將熱量從結(jié)或裸片傳遞到周圍環(huán)境或印刷電路板的能力的量度。熱阻越低,裸片散熱越快越好。低壓功率MOSFET的熱阻與幾個(gè)因素有關(guān):器件特性,例如,封裝類型、裸片尺寸厚度。裸片貼裝工藝的一些缺陷(空隙)也會(huì)明顯改變器件的熱阻,從而導(dǎo)致裸片上局部溫度升高。然后,芯片工藝中的不一致性可能會(huì)產(chǎn)生局部熱點(diǎn),最終可能導(dǎo)致器件失效。另一個(gè)風(fēng)險(xiǎn)因素是溫度升高。事實(shí)上,硅材料的熱阻是隨著溫度升高而增加,這會(huì)降低離結(jié)較遠(yuǎn)區(qū)域的散熱性能。芯片封裝過程中的不一致性以及高溫會(huì)引起裸片局部區(qū)域的熱阻值升高,從而為熱失控和器件失效埋下隱患 [3]。
試驗(yàn)驗(yàn)證
我們采用圖 10 所示的測(cè)試電路驗(yàn)證了STH200N10WF7-2 MOSFET 的耐用性。
圖10 測(cè)試電路
測(cè)試條件如下:
Vcc=VDS = 40 V
VDZ=36 V
R=1k?.
第一個(gè)測(cè)試是施加一個(gè)持續(xù)時(shí)間為 10 ms 的脈沖,同時(shí)增加 ID 電流值直到器件失效為止。標(biāo)準(zhǔn) MOSFET 和寬 SOA 器件在失效前的相關(guān)測(cè)量波形如圖 11 和 12 所示。
圖11 脈沖持續(xù)時(shí)間固定的標(biāo)準(zhǔn)器件測(cè)量波形
圖12 脈沖持續(xù)時(shí)間固定的寬 SOA 器件的測(cè)量波形
實(shí)驗(yàn)數(shù)據(jù)證明,寬 SOA MOSFET 的電流處理能力非常出色,能夠承受 29.5A 的電流,而標(biāo)準(zhǔn)器件只能處理1.2A的電流。
第二個(gè)測(cè)試是給電路施加20A電流,同時(shí)增加脈沖持續(xù)時(shí)間直到器件失效。兩種器件在失效前測(cè)量到的波形如圖 13 和14 所示。
圖13 漏極電流固定的標(biāo)準(zhǔn)器件測(cè)量波形
圖14 漏極電流固定的寬SOA器件測(cè)量波形
測(cè)試結(jié)果證明,寬 SOA MOSFET具有很高的耐用性,能夠在惡劣的線性模式條件正常工作20ms,而標(biāo)準(zhǔn)器件只工作800μs就失效了。
下圖所示(圖 15 和 16)是把這些功率處理能力和脈沖持續(xù)時(shí)間實(shí)驗(yàn)測(cè)試結(jié)果投射到SOA 曲線上。
圖15 功率處理能力試驗(yàn)在 SOA上的投影
圖16 脈沖持續(xù)時(shí)間試驗(yàn)在 SOA上的投影
功率水平和脈沖持續(xù)時(shí)間兩項(xiàng)測(cè)試都證明,寬 SOA 技術(shù)具有更高的耐用性。如圖 17 所示,最好的競(jìng)品在更低的功率水平和更短的脈沖持續(xù)時(shí)間下失效了。
圖17 競(jìng)品的測(cè)量波形
實(shí)驗(yàn)結(jié)果表明,競(jìng)品僅能承受 30V電壓10.4A 電流10ms。
結(jié)論
新的寬 SOA MOSFET 技術(shù)在線性模式下工作性能表現(xiàn)出色,這要?dú)w功于產(chǎn)品本身的高耐用性和防止熱失控的熱穩(wěn)定性。此外,這款可以在全飽和區(qū) (線性電阻行為) 工作的器件也適用于僅在過渡階段有線性模式的開關(guān)電源應(yīng)用。STH200N10WF7-2 是設(shè)計(jì)更安全的電子系統(tǒng)的最佳選擇。
參考文獻(xiàn)
[1] A. Consoli, F. Gennaro, A. Testa, G. Consentino, F. Frisina, R. Letor and A. Magrì, “Thermal instability of low voltage power MOSFET’s”, IEEE Transaction on Power Electronics, vol. 15, no. 3, May 2000.
[2] G. Consentino and G. Bazzano, “Investigations on Electro-Instability of Low Voltage Power MOSFETs: Theoretical Models and Experimental comparison results for different structures”, PET 2004 Conference, Chigaco 2004.
[3] A Raciti, F. Chimento, S. Musumeci, G. Privitera, "A New Thermal Model for Power MOSFET Devices Accounting for the Behavior in Unclamped Inductive Switching", Special Issue on Reliability Issues in Power Electronics (Si and Wide Band Gap Devices, Interconnections, Passives, Analysis and Applications) on Microelectronics Reliability, ELSEVIER Editor 58 (2016) Conf. Rec. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), 3-5 Sept. 2019, Genova, Italy.
評(píng)論