一個(gè)BUCK電源電路設(shè)計(jì)測試過程(上)
1 芯片選型
本文引用地址:http://cafeforensic.com/article/202405/459228.htm如下圖1所示為本模塊的電路原理圖,具體可以簡化為輸入部分、控制部分、輸出部分以及反饋部分。輸入部分:電容C1、C2、C3以及R1;控制部分:MP4420H芯片以及自舉電路C5、R5;輸出部分:電感L1、電容C6、C7以及C8。反饋部分:電阻R3、R4以及R2。
圖1 電源模塊原理圖
本模塊需要實(shí)現(xiàn)一個(gè)DC-DC的電源轉(zhuǎn)換功能,其輸入為12V,輸出為3.3V/2A。選擇MP4420H這款芯片,MP4420H的輸入范圍為4V-36V之間,輸出電壓范圍為0.8V-32.4V,最大輸出電流2A。MP4420H的特點(diǎn)有:內(nèi)置兩只開關(guān)管且采用同步BUCK的技術(shù)、開關(guān)頻率為450KHZ、內(nèi)部實(shí)現(xiàn)軟啟動、占空比最大可達(dá)到95%以及熱關(guān)斷等。
如圖2所示為其引腳圖。
圖2 MPH4420H引腳圖
PG:該引腳的輸出為開漏,輸出電壓為高電平超過標(biāo)稱電壓的90%
IN:電源輸入端,一般接幾個(gè)電容用來儲能和去耦
SW: 開關(guān)輸出引腳
GND: 接地端
BST: 自舉引腳端,需要在SW和BST引腳之間連接一個(gè)電容以形成浮動電壓來驅(qū)動MP4420H內(nèi)上端的開關(guān)管。自舉電容建議串聯(lián)一個(gè)20歐姆電阻以降低SW尖峰電壓。
EN/SYNC:使能/同步引腳端
VCC: 偏置電壓,一般會加一個(gè)0.1Uf ~0.22uF的去耦電容,不要超過0.22uF
FB:反饋端
2 電容選型
2.1輸入電容選型:
輸入電容的主要目的為儲能和濾波,以防止輸出需要大電流的時(shí)候,外部供電模塊來不及供電,從而導(dǎo)致輸出電壓跌落的現(xiàn)象。在選擇輸入電容的時(shí)候首先要保證電容的耐壓值為供電模塊電壓的1.5倍,
根據(jù)MP4420H的數(shù)據(jù)手冊可知輸入電容的計(jì)算公式1:
公式1:
為輸出電流2A,fs為開關(guān)頻率450KHZ,Cin為輸入電容,Vout為輸出電壓3.3V,Vin為輸入電壓12V。本模塊選用MP4420H數(shù)據(jù)手冊中推薦的22uF的貼片陶瓷電容,可計(jì)算出為44mV。選擇兩個(gè)風(fēng)華牌10uF/25V的C1和C2貼片陶瓷電容并聯(lián),再并聯(lián)一個(gè)電容C3大小為10nF/25V的小電容以濾除輸入直流電壓中夾雜的高頻信號。
2.2輸出電容選型:
輸出濾波電容值可通過計(jì)算得到,但是一般在選擇電容值的時(shí)候通常會選擇1.2-2倍計(jì)算出的電容值或者更大的電容量,在PCB面積允許的條件下最好多個(gè)電容并聯(lián)。由于輸出濾波電容和輸出電感會形成兩個(gè)極點(diǎn),這會導(dǎo)致電路輸出不正常,具體表現(xiàn)為輸出紋波較大、輸出上升沿有強(qiáng)烈的振蕩等。所以在選擇電容值的時(shí)候也要適當(dāng)考慮電感值。由MP4420H數(shù)據(jù)手冊可知輸出電容和以下公式相關(guān):
L1為輸出濾波電感,ESR為輸出電容的內(nèi)阻。故根據(jù)輸出紋波的要求可大致得到輸出電容的大小,在選擇電容的時(shí)候一般都會選擇電容值更大點(diǎn)的電容。對于開關(guān)電源模塊,電源自身會產(chǎn)生和開關(guān)頻率一致的電源紋波,始終疊加在電源上輸出。輸出紋波也會由輸出電容的內(nèi)阻所引起,不斷的給輸出電容充放電,充電電流在輸出電容的內(nèi)阻ESR兩端就會有壓降,這個(gè)就會產(chǎn)生輸出紋波,所以在選擇輸出電容的時(shí)候盡量選擇ESR較小的貼片陶瓷電容而不是電解電容,選擇幾個(gè)電容并聯(lián)也是為了降低輸出內(nèi)阻,一般都會在輸出端并聯(lián)一個(gè)較小的電容一般為nF級別的電容以濾去高頻紋波。本模塊選擇兩個(gè)100uF/16V和一個(gè)100nF/16V的貼片陶瓷電容并聯(lián)。
3電感選型
輸出電感的主要作用是用來穩(wěn)定輸出電流以及儲能,輸出電感和輸出電容組成的LC濾波電路主要用來平滑輸出電壓,使輸出電壓是一個(gè)穩(wěn)定的直流。在選擇輸出電感的時(shí)候,除了要考慮電感值的大小外更要考慮電感所能抑制的電流值。對于BUCK開關(guān)變換器的輸出電感的電流額定值最少是1.2倍的輸出電流。根據(jù)MP4420H的數(shù)據(jù)手冊可知,輸出電感的電感值在1uH~10uF,電感電流額定值最少為超過負(fù)載電流的25%。對于大多數(shù)的設(shè)計(jì),電感值可由以下公式得到:
為電感的斜坡電流,其大小一般為電感電流最大值的30%。
根據(jù)計(jì)算得到輸出電感值為8uH,實(shí)際選擇10uH/5A的貼片電感。
4 電阻選型
使能電阻R1的選擇,EN/SYNC引腳用來控制芯片是否工作,當(dāng)其為高電平時(shí),芯片就使能工作;當(dāng)其為低電平時(shí),芯片就不工作。EN/SYNC引腳有一個(gè)6.5V的穩(wěn)壓管,連接一個(gè)使能電阻到輸入端可以使電路使能,流入使能電阻的電流少于150uA,故本模塊的使能電阻
,選擇R1=100KW。
反饋部分電阻的選擇,MP4420H通過外接反饋電阻形成一個(gè)閉環(huán)的電路,從而使輸出穩(wěn)定在3.3V。通過R3和R4的分壓得到反饋電壓,反饋電壓和MP4420H內(nèi)部的比較器做比較,當(dāng)反饋電壓大于內(nèi)部比較器的參考電壓0.8V時(shí),MP4420H內(nèi)部的開關(guān)管關(guān)斷,切斷輸入向輸出傳遞能量。數(shù)據(jù)手冊中推薦R3的大小在40KW左右,本模塊選擇41.3KW。故可得到R4:
由Vout=3.3V,可得到R4=13KW
R3和R2用來設(shè)置環(huán)路帶寬,R3和R2越大,帶寬越小,環(huán)路帶寬一般要小于開關(guān)頻率fs的1/10,以使輸出穩(wěn)定。根據(jù)數(shù)據(jù)手冊推薦的R2為51KW。
二、電源測試
1電源PDN和紋波噪聲
1.1 電源PDN
電源紋波噪聲測試是一個(gè)比較復(fù)雜的測試難題,不同方法測量到的結(jié)果不同,即使同一種測試方法不同人測試結(jié)果一般也會存在差別。
對于終端類產(chǎn)品,不管是CPU、GPU、DDR等,其芯片內(nèi)部都有成千上萬的晶體管,芯片內(nèi)不同的電路需要不同的電源供電,常見有Vcore、Vcpu、Vmem、VIO、Vgpu、Vpll等,這些電源有DC-DC電源模塊供電,也有LDO電源模塊供電,都統(tǒng)一由PMU來管理。
如圖3所示,為芯片的PDN圖,芯片的供電環(huán)路從穩(wěn)壓模塊VRM開始,到PCB的電源網(wǎng)絡(luò),芯片的ball引腳,芯片封裝的電源網(wǎng)絡(luò),最后到達(dá)die. 當(dāng)芯片工作在不同負(fù)載時(shí),VRM無法實(shí)時(shí)響應(yīng)負(fù)載對電流快速變化的需求,在芯片電源電壓上產(chǎn)生跌落,從而產(chǎn)生了電源噪聲。對于開關(guān)電源模塊的VRM,電源自身會產(chǎn)生和開關(guān)頻率一致的電源紋波,始終疊加在電源上輸出。對于電源噪聲,需要在封裝、PCB上使用去耦電容,設(shè)計(jì)合理的電源地平面,最終濾去電源噪聲。對于電源紋波,需要增大BULK電感或者BULK電容。
圖3芯片電源分布網(wǎng)絡(luò)(PDN)示意圖
對于板級PCB設(shè)計(jì),當(dāng)頻率達(dá)到一定頻率后,由于走線的ESL、電容的ESL的影響,已經(jīng)無法濾去高頻噪聲,業(yè)界認(rèn)為PCB只能處理100MHz以內(nèi)的噪聲,更高頻率的噪聲需要封裝或者die來解決。因此對于板級電源噪聲測試,使用帶寬500M以上的示波器就足夠了。一般情況下,示波器的帶寬越大,低噪也會隨之上升,因此建議測試電源時(shí)示波器的帶寬限制為1GHz。
1.2 電源紋波和電源噪聲
電源紋波和電源噪聲是一個(gè)比較容易混淆的概念,如下圖4所示,藍(lán)色波形為電源紋波,紅色波形為電源噪聲。電源紋波的頻率為開關(guān)頻率的基波和諧波,而噪聲的頻率成分高于紋波,是由板上芯片高速I/O的開關(guān)切換產(chǎn)生的瞬態(tài)電流、供電網(wǎng)絡(luò)的寄生電感、電源平面和地平面之間的電磁輻射等諸多因素產(chǎn)生的。因此,在PMU側(cè)測量電源輸出為紋波,而在SINK端(耗電芯片端,如AP、EMMC、MODEM等)測量的是電源噪聲。
圖4電源紋波噪聲圖
電源紋波測量時(shí),限制示波器帶寬為20MHz,測量PMU電源輸出的波形峰峰值即可電源紋波。由于PMU芯片在設(shè)計(jì)完成后,芯片廠商會做負(fù)載測試,測試PMU在不同負(fù)載時(shí)輸出電源的紋波情況,因此在終端類產(chǎn)品板上,沒必要在做這方面的測試,紋波大小參考PMU手冊即可。
電源噪聲測試時(shí),測試點(diǎn)放在SINK端,由于SINK端工作速度大都在幾十MHz以上,因此示波器帶寬設(shè)置為全頻段(最高為示波器帶寬上限),測試點(diǎn)要盡量靠近測試芯片的電源引腳,如果存在多個(gè)電源引腳,應(yīng)該選擇距離PMU最遠(yuǎn)端的那個(gè)引腳。電源噪聲跟PCB布局布線,DECAP電容的位置的位置相關(guān),同時(shí)電源噪聲影響CPU的工作狀態(tài)和單板的EMI,終端類產(chǎn)品板需要對每塊單板測試電源噪聲。
2常見的紋波噪聲測試方案
2.1 紋波噪聲測試基本要求
目前芯片的工作頻率越來越高,工作電壓越來越低,工作電流越來越大,噪聲要求也更加苛刻,以MSM8974的CORE核為例,電壓為0.9V,電流為3A,要求25MHz時(shí),交流PDN阻抗為22mohm,電源噪聲要求在±33mV以內(nèi)。對于DDR3芯片,要求VREF電源噪聲在±1%以內(nèi),若1.5V供電,則噪聲峰峰值不大于30mV。
這類低噪聲的電源測試非常具有挑戰(zhàn),影響其測量準(zhǔn)確性的主要有如下幾點(diǎn):
(1)示波器通道的底噪;
(2)示波器的分辨率(示波器的ADC位數(shù));
(3)示波器垂直刻度最小值(量化誤差);
(4)探頭帶寬;
(5)探頭GND和信號兩個(gè)測試點(diǎn)的距離;
(6)示波器通道的設(shè)置;
在測試電源噪聲時(shí),要求如下條件:
(1)需要在重負(fù)載情況下測試電源紋波;
(2)測試電源紋波時(shí)應(yīng)該將CPU、GPU、DDR頻率鎖定在最高頻;
(3)測試點(diǎn)應(yīng)該在SINK端距離PMU最遠(yuǎn)的位置;
(4)測試點(diǎn)應(yīng)該靠近芯片的BALL;
(5)帶寬設(shè)置為全頻段;
(6)示波器帶寬大于500MHz;
(7)噪聲波形占整個(gè)屏幕的2/3以上或者垂直刻度已經(jīng)為最小值;
(8)探頭地和信號之間的回路最短,電感最小;
(9)測試時(shí)間大于1min,采樣時(shí)間1ms以上,采樣率500Ms/s以上;
(10)紋波噪聲看Pk-Pk值,關(guān)注Max、Min值;
2.2 高通濾波器特性分析
示波器有AC和DC兩種耦合方式,當(dāng)采用AC耦合時(shí),其內(nèi)部等效電路如圖5所示,C為隔值電容,R為終端對地阻抗,Vi為輸入信號,Vo為測量信號,濾波器的截止頻率為若為信號頻率,則有:
當(dāng) 時(shí),,用分貝表示為:,則表示信號經(jīng)過濾波器可以無衰減傳遞;
當(dāng) 時(shí),,用分貝表示為:,則表示該頻段的信號經(jīng)過濾波器后,按照-20dB/十倍頻的斜率衰減;
當(dāng) 時(shí),則表示信號衰減約0.707倍。
當(dāng)時(shí),Vo=0.99Vi,測試誤差為1%。
圖5 加隔值電容后高通濾波器等效電路
表1不同隔值電容對應(yīng)的頻點(diǎn)
隔直電容容值(uF) | 50W截止頻率(KHz) | 50W-1%誤差頻點(diǎn)(KHz) | 50W截止頻率(Hz) | 1MW-1%誤差頻點(diǎn)(Hz) |
0.1 | 31.83 | 222.82 | 1.5915 | 11.14 |
0.47 | 6.77 | 47.41 | 0.3386 | 2.37 |
1 | 3.18 | 22.28 | 0.1592 | 1.11 |
2.2 | 1.45 | 10.13 | 0.0723 | 0.51 |
10 | 0.32 | 2.23 | 0.0159 | 0.11 |
2.3 無源探頭DC耦合測試
使用無源探頭DC耦合測試,示波器內(nèi)部設(shè)置為DC耦合,耦合阻抗為1Mohm,此時(shí)無源探頭的地線接主板地,信號線接待測電源信號。這種測量方法可以測到除DC以外的電源噪聲紋波。
如圖6所示,當(dāng)采用普通的鱷魚夾探頭時(shí),由于地和待測信號之間的環(huán)路太大,而探頭探測點(diǎn)靠近高速運(yùn)行的IC芯片,近場輻射較大,會有很多EMI噪聲輻射到探頭回路中,使測試的數(shù)據(jù)不準(zhǔn)確。為了改善這種情況,推薦用無源探頭測試紋波時(shí),使用右圖中的探頭,將地信號纏繞在信號引腳上,相當(dāng)于在地和信號之間存在一個(gè)環(huán)路電感,對高頻信號相當(dāng)于高阻,有效抑制由于輻射產(chǎn)生的高頻噪聲。更多時(shí)候,建議測試者采用第三種測試方法,將一個(gè)漆包線繞在探頭上,然后將漆包線的焊接到主板地網(wǎng)絡(luò)上,移動探頭去測試每一路電源紋波噪聲。同時(shí)無源探頭要求盡量采用1:1的探頭,杜絕使用1:10的探頭。
圖6無源探頭地線兩種處理方法
對于示波器,若垂直刻度為xV/div,示波器垂直方向?yàn)?0div,滿量程為10xV,示波器采樣AD為8位,則量化誤差為10x/256 V。例如一個(gè)1V電源,噪聲紋波為50mV,如果要顯示這個(gè)信號,需要設(shè)置垂直刻度為200mV/div,此時(shí)量化誤差為7.8mV,如果把直流1V通過offset去掉,只顯示紋波噪聲信號,垂直刻度設(shè)置為10mV即可,此時(shí)的量化誤差為0.4mV。
使用無源探頭DC耦合測試,示波器設(shè)置如下:
(1)1Mohm端接匹配;
(2)DC耦合;
(3)全帶寬;
(4)offset設(shè)置為電源電壓;
2.4 無源探頭AC耦合測試
使用無源探頭DC耦合需要設(shè)置offset,對于電源電壓不穩(wěn)定的情況,offset設(shè)置不合理,會導(dǎo)致屏幕上顯示的信號超出量程,此時(shí)選擇AC耦合,使用內(nèi)置的擱置電路來濾去直流分量。對于大多數(shù)的示波器,會有如下參數(shù),設(shè)置為AC耦合,此時(shí)測量的為10Hz以上的噪聲紋波。
圖7示波器兩種耦合方式頻點(diǎn)
使用無源探頭AC耦合測試,設(shè)置如下:
(1)1Mohm端接匹配;
(2)AC耦合;
(3)全帶寬;
(4)offset設(shè)置為0
2.5 同軸線外部隔直電容DC50歐耦合測試
由于無源探頭的帶寬較低,而電源開關(guān)噪聲一般都在百M(fèi)Hz以上,同時(shí)電源內(nèi)阻一般在幾百毫歐以內(nèi),選擇高阻1Mohm的無源探頭對于高頻會產(chǎn)生反射現(xiàn)象,因此可以選擇用同軸線來代替無源探頭,此時(shí)示波器端接阻抗設(shè)置為50歐,與同軸線阻抗相匹配,根據(jù)傳輸線理論,電源噪聲沒有反射,此時(shí)認(rèn)為測量結(jié)果最準(zhǔn)確。
利用同軸線的測量方法,最準(zhǔn)確的是采用DC50歐,但是大部分示波器在DC50歐時(shí)offset最大電壓為1V,無法滿足大部分電源的測量要求,而示波器內(nèi)部端接阻抗為50歐時(shí),不支持AC耦合,因此需要外置一個(gè)AC電容,如圖8所示,當(dāng)串聯(lián)電容值為10uF時(shí),根據(jù)表1可以看到,此時(shí)可以準(zhǔn)確測試到2KHz以上的紋波噪聲信號。
圖8 同軸線DC50測量圖
2.6 同軸線AC1M歐耦合測試
由于從PMU出來的電源紋波噪聲大多集中在1MHz以內(nèi),如果采用同軸線DC50外置隔直電容測量方法,低頻噪聲分量損失較為嚴(yán)重,因此改用圖9所示的測量方法,利用同軸線傳輸信號,示波器設(shè)置為AC1M,這樣雖然存在反射,但是反射信號經(jīng)過較長CABLE線折返傳輸后,影響是有限的,示波器在R2上采集電壓值可以認(rèn)為仍然可以被參考。
圖9同軸線AC1M測量圖
為了避免反射,在同軸線接到示波器的接口處端接一個(gè)50ohm電阻,使示波器輸入阻抗和cable線特征阻抗匹配。
圖10同軸線AC1M測量改進(jìn)圖
2.7 差分探頭外置電容DC耦合測試
由于示波器的探頭地和機(jī)殼地通過一個(gè)小電容接在一起,而示波器的機(jī)殼地又通過三角插頭和大地接在一起,在實(shí)驗(yàn)室里,幾乎所有的設(shè)備地都和大地接在一起,示波器內(nèi)部地線接法如圖11所示,因此上面介紹的兩種方法都無法解決地干擾問題,為了解決這個(gè)問題,需要引入浮地示波器或者差分探頭。
圖11示波器內(nèi)部地線接法
如圖12所示,為差分接法,由于差分探頭為有源探頭,外置差動放大器,可以將待測信號通過差分方式接入,使示波器的地和待測件地隔離開,達(dá)到浮地效果。但是差分探頭在示波器內(nèi)部只能DC50歐耦合,而offset最大一般不超過1V,因此需要在差分探頭上串聯(lián)隔直電容。使用差分探頭測量時(shí)關(guān)鍵是探頭的CMRR要足夠大,這樣才能有效抑制共模噪聲。
圖12 差分探頭外置電容DC耦合接法示意圖
3.8 差分探頭衰減DC耦合測試
當(dāng)采用差分探頭外置電容DC耦合時(shí),同樣存在截止頻率的問題,測量的結(jié)果會損失一些低頻分量,為了解決這個(gè)問題,可以將差分探頭衰減10倍,示波器會將采集到的電壓值乘10顯示出來,這個(gè)時(shí)候offset設(shè)置也會放大到10V,能夠滿足終端類產(chǎn)品的直流電壓偏置。
圖13差分探頭衰減DC耦合測試接法示意圖
評論