工程師詳解非隔離式開關電源PCB布局設計技巧
一個良好的布局設計可優(yōu)化效率,減緩熱應力,并盡量減小走線與元件之間的噪聲與作用。這一切都源于設計人員對電源中電流傳導路徑以及信號流的理解。
本文引用地址:http://cafeforensic.com/article/226676.htm當一塊原型電源板首次加電時,最好的情況是它不僅能工作,而且還安靜、發(fā)熱低。然而,這種情況并不多見。
開關電源的一個常見問題是“不穩(wěn)定”的開關波形。有些時候,波形抖動處于聲波段,磁性元件會產(chǎn)生出音頻噪聲。如果問題出在印刷電路板的布局上,要找出原因可能會很困難。因此,開關電源設計初期的正確PCB布局就非常關鍵。
電源設計者要很好地理解技術細節(jié),以及最終產(chǎn)品的功能需求。因此,從電路板設計項目一開始,電源設計者應就關鍵性電源布局,與PCB布局設計人員展開密切合作。
一個好的布局設計可優(yōu)化電源效率,減緩熱應力;更重要的是,它最大限度地減小了噪聲,以及走線與元件之間的相互作用。為實現(xiàn)這些目標,設計者必須了解開關電源內(nèi)部的電流傳導路徑以及信號流。要實現(xiàn)非隔離開關電源的正確布局設計,務必牢記以下這些設計要素。
布局規(guī)劃
對一塊大電路板上的嵌入dc/dc電源,要獲得最佳的電壓調(diào)節(jié)、負載瞬態(tài)響應和系統(tǒng)效率,就要使電源輸出靠近負載器件,盡量減少PCB走線上的互連阻抗和傳導壓降。確保有良好的空氣流,限制熱應力;如果能采用強制氣冷措施,則要將電源靠近風扇位置。
另外,大型無源元件(如電感和電解電容)均不得阻擋氣流通過低矮的表面封裝半導體元件,如功率MOSFET或PWM控制器。為防止開關噪聲干擾到系統(tǒng)中的模擬信號,應盡可能避免在電源下方布放敏感信號線;否則,就需要在電源層和小信號層之間放置一個內(nèi)部接地層,用做屏蔽。
關鍵是要在系統(tǒng)早期設計和規(guī)劃階段,就籌劃好電源的位置,以及對電路板空間的需求。有時設計者會無視這種忠告,而把關注點放在大型系統(tǒng)板上那些更“重要”或“讓人興奮”的電路。電源管理被看作事后工作,隨便把電源放在電路板上的多余空間上,這種做法對高效率而可靠的電源設計十分不利。
對于多層板,很好的方法是在大電流的功率元件層與敏感的小信號走線層之間布放直流地或直流輸入/輸出電壓層。地層或直流電壓層提供了屏蔽小信號走線的交流地,使其免受高噪聲功率走線和功率元件的干擾。
作為一般規(guī)則,多層PCB板的接地層或直流電壓層均不應被分隔開。如果這種分隔不可避免,就要盡量減少這些層上走線的數(shù)量和長度,并且走線的布放要與大電流保持相同的方向,使影響最小化。
圖1a和1c分別是六層和四層開關電源PCB的不良層結構。這些結構將小信號層夾在大電流功率層和地層之間,因此增加了大電流/電壓功率層與模擬小信號層之間耦合的電容噪聲。
圖中的1b和1d則分別是六層和四層PCB設計的良好結構,有助于最大限度減少層間耦合噪聲,地層用于屏蔽小信號層。要點是:一定要挨著外側功率級層放一個接地層,外部大電流的功率層要使用厚銅箔,盡量減少PCB傳導損耗和熱阻。功率級的布局
開關電源電路可以分為功率級電路和小信號控制電路兩部分。功率級電路包含用于傳輸大電流的元件,一般情況下,要首先布放這些元件,然后在布局的一些特定點上布放小信號控制電路。
大電流走線應短而寬,盡量減少PCB的電感、電阻和壓降。對于那些有高di/dt脈沖電流的走線,這方面尤其重要。
圖2給出了一個同步降壓轉換器中的連續(xù)電流路徑和脈沖電流路徑,實線表示連續(xù)電流路徑,虛線代表脈沖(開關)電流路徑。脈沖電流路徑包括連接到下列元件上的走線:輸入去耦陶瓷電容CHF,上部控制FET QT以及下部同步FET QB,還有選接的并聯(lián)肖特基二極管。
圖3a給出了高di/dt電流路徑中的PCB寄生電感。由于存在寄生電感,因此脈沖電流路徑不僅會輻射磁場,而且會在PCB走線和MOSFET上產(chǎn)生大的電壓振鈴和尖刺。為盡量減小PCB電感,脈沖電流回路(所謂熱回路)布放時要有最小的圓周,其走線要短而寬。
高頻去耦電容CHF應為0.1μF~10μF,X5R或X7R電介質(zhì)的陶瓷電容,它有極低的ESL(有效串聯(lián)電感)和ESR(等效串聯(lián)電阻)。較大的電容電介質(zhì)(如Y5V)可能使電容值在不同電壓和溫度下
評論