色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 測試測量 > 設計應用 > 新型氣體泄漏超聲檢測系統(tǒng)的研究與設計

          新型氣體泄漏超聲檢測系統(tǒng)的研究與設計

          ——
          作者:龔其春 葉 騫 劉成良 王永紅 時間:2007-02-07 來源:電子技術應用 收藏

          摘 要:介紹了一種新型的氣體泄漏超聲檢測系統(tǒng),在分析小孔氣體泄漏產生超聲波的原理的基礎上,闡述了該檢測系統(tǒng)的原理及設計方案。該系統(tǒng)能對各種壓力容器的孔隙泄漏所產生的微弱超聲信號進行精確檢測。該系統(tǒng)利用技術對泄漏所產生的超聲波信號進行分析處理和計算,從而實現對泄漏的檢測及泄漏量的估算。

          關鍵詞

          目前,工業(yè)上和生活中均大量用到用于儲存和輸送壓縮氣體的壓力容器,如氣缸、氣罐、煤氣管道等。由于各種原因,容器會產生漏孔從而發(fā)生氣體泄漏。據估計,工業(yè)上由于泄漏而損失掉的壓縮氣體平均占到40%左右。泄漏不但會造成能源的浪費,而且如果是有害氣體的話,還會對空氣造成污染。因此,準確地判斷和定位產生泄漏的位置,對于提高企業(yè)的生產效率和節(jié)約能源具有重大的意義。

          傳統(tǒng)的泄漏檢測方法如絕對壓力法、壓差法、氣泡法等,操作復雜并且對技術人員要求較高,而且不具有實時性。目前,工業(yè)上廣泛利用泄漏產生超聲波的原理來進行泄漏檢測。利用超聲波檢測氣體泄漏位置,不僅方法簡單,而且準確可靠?;诖?本文研究并設計了一種新型的超聲波氣體泄漏檢測系統(tǒng)。

          1 檢測原理

          1.1氣體泄漏產生超聲波


          如果一個容器內充滿氣體,當其內部壓強大于外部壓強時,由于內外壓差較大,一旦容器有漏孔,氣體就會從漏孔沖出。當漏孔尺寸較小且雷諾數較高時,沖出氣體就會形成湍流,湍流在漏孔附近會產生一定頻率的聲波,如圖1所示。聲波振動的頻率與漏孔尺寸有關,漏孔較大時人耳可聽到漏氣聲,漏孔很小且聲波頻率大于20kHz時,人耳就聽不到了,但它們能在空氣中傳播,被稱作空載超聲波。超聲波是高頻短波信號,其強度隨著離開聲源(漏孔)距離的增加而迅速衰減。因此,超聲波被認為是一種方向性很強的信號,用此信號判斷泄漏位置相當簡單。

          圖1 氣體泄漏產生超聲波

          1.2 聲壓與泄漏量的關系

          泄漏超聲本質上是湍流和沖擊噪聲。泄漏駐點壓力P與泄漏孔口直徑D決定了湍流聲的L。著名學者馬大猷教授推出如下公式[1]:

          式中,L為垂直方向距離噴口1m處的聲壓級(單位:dB);D為噴口直徑(單位:mm);D0=1mm;P0為環(huán)境大氣絕對壓力;P為泄漏孔駐壓。
           
          由此可知, 在與泄漏孔的距離一定時,泄漏超聲的聲壓級是隨泄漏孔尺寸和系統(tǒng)壓力的變化而變化的。

          泄漏產生的超聲波頻帶比較寬,一般在20kHz到100kHz之間。在不同的頻率點,超聲波的能量是不同的。實際上,它的頻譜峰值也是隨泄漏孔的尺寸和壓力的變化而變化的。比如:在一定的泄漏孔徑和壓力下,如果的頻譜峰值是在38kHz點,那么加大孔徑以后它的頻譜峰值可能出現在36kHz點;如果孔徑不變,加大系統(tǒng)內外壓差,頻譜峰值可能出現在43kHz點。但是在同一頻率點,對于形狀相同的泄漏孔,泄漏所產生的超聲波的聲強隨泄漏量的增大而增大。另外,如果泄漏量恒定,即泄漏面積一定,則泄漏孔的形狀越接近于圓形,聲壓越高。當泄漏孔的雷諾數用式(2)表示時,在40kHz點聲壓與雷諾數之間的關系如圖2所示。

           

          圖2 聲壓級與雷諾數的關系

          式中,ρ為氣體密度;μ為粘度;V為流速;D為力學平均直徑。

          由圖2可知,如果能檢測出泄漏孔附近在某一個頻率點的聲強,則可以推算出該泄漏孔的雷諾數。對于該泄漏孔,由于它的力學平均直徑是確定的,所以這時雷諾數與氣體泄漏量成正比關系。但是對于不同的泄漏孔,并不知道它的力學平均直徑,因此光知道雷諾數還不能求出泄漏量。在工業(yè)上,對于管道氣體,由于有源源不斷的氣體補給,管道里面的氣壓一般都是恒定值。而對于工業(yè)容器,由于小孔泄漏的泄漏量非常微弱,容器當中的壓力變化非常緩慢,所以可以認為在一段時期內是恒定值。當系統(tǒng)內外壓力一定時,對于不同的泄漏孔,它的泄漏流速都是一定的,可以用公式(3)[2]來表示:

          式中,V為氣體流速;p為管內壓力;P0為環(huán)境大氣絕對壓力;T1為絕對溫度;σ=P0/P;R為氣體常數;K=,對于空氣,k=1.4,則K=2.646。

          當雷諾數、氣體流速知道以后,就可以反求出該泄漏孔力學平均直徑D,即可得出泄漏量。通過以上分析得出:只要能檢測出距離泄漏點一定距離的超聲波在某一個頻率點的強度,再給出泄漏系統(tǒng)內外壓力,就可以估算出氣體泄漏量。

          2 系統(tǒng)硬件實現

          小孔氣體泄漏所發(fā)出的超聲波強度是極其微弱的,而且在工業(yè)場合,環(huán)境噪聲是相當大的。所以要檢測出在惡劣環(huán)境下的氣體泄漏所發(fā)出的超聲,必須對系統(tǒng)信號放大部分進行精心的設計。在本系統(tǒng)中只檢測40kHz點的的強度,原因是通過實驗得出,在40kHz點的泄漏超聲波能量都是比較大的,而且泄漏聲和能量差值也最大(如圖3所示)。這樣選擇可以增加系統(tǒng)靈敏度。

          系統(tǒng)原理如圖4所示。系統(tǒng)分為模擬和數字兩部分,模擬部分包括信號放大電路和音頻處理電路等。信號放大電路由前置放大電路、帶通濾波電路和二次放大電路組成。音頻處理電路由本振電路、混頻器、功率驅動電路組成。數字部分主要由和LCD、RAM、鍵盤等外圍設備組成。傳感器信號經過放大濾波以后,一路交由DSP處理,另一路通過降頻轉化為可聽聲。下面分別介紹各部分原理。

           

          圖3 與泄漏聲聲壓圖

          圖4 系統(tǒng)原理圖

          2.1 信號放大電路

          圖5所示為模擬電路的信號放大部分。

          前置放大電路選用AD公司的專用高精度儀器三運放AD620。AD620是由三個精密運放集成的差分專用儀器運放,它具有低偏移、高增益(信號可直接放大到1000倍)、高共模擬制比的特點,特別適用于放大傳感器信號。由于傳感器接收到的大量的低頻噪聲(如50Hz的工頻噪聲)強度遠大于它所接收到的超聲信號,所以在傳感器與AD620之間必須接一個無源高通濾波器。這樣雖然增加了傳感器的功耗,但是在后面可以通過增大放大倍數來彌補。第二級是一個有源帶通濾波電路。在這一級可以濾掉前面濾波器沒有濾掉的大部分背景噪聲和由器件或電路產生的噪聲。這里選擇的通帶為38kHz~42kHz。第二級和第三級運放都采用AD公司的OP777,它是一個超精密的低噪聲運放,具有極低的電壓和電流偏移以及很高的增益穩(wěn)定性。第三級是一個一般的同相放大電路。經過第三級放大以后,信號范圍為-3.3V~+3.3V,再經過如圖所示的兩個20kΩ的電阻,并接上+3.3V的偏置電壓,就可以使輸入到DSP的AD采樣信號變?yōu)?~3.3V。

          雖然選用的器件是低噪聲的,但是對于檢測極其微弱的泄漏超聲信號來說,還是不能忽略器件本身的噪聲。在信號進入DSP以后再一次對其進行數字濾波,濾掉由前面器件和電路產生的直流電壓偏置和噪聲。這樣可以得到足夠高精度的泄漏超聲波信號。

          圖5 信號放大電路

          圖6 音頻處理電路原理圖

          2.2 音頻處理電路設計

          設計音頻處理電路的目的是能夠比較方便地判斷哪里有泄漏的產生。人耳的聽覺范圍大約在1kHz到20kHz之間。因此檢測到的超聲信號必須通過降頻才能為人耳所聽到。降頻的原理是利用差分信號的乘法特性:

          然后在Uo后接上低通濾波器,則可得差頻信號。如選用本振電路的頻率為37kHz,那么得到的差頻信號為3kHz,可為人耳聽到。音頻處理電路的原理圖如圖6所示。

          2.3 DSP

          DSP的主要功能是負責A/D轉換、對A/D轉換后的信號進行分析處理、對LCD及電源進行管理。這里采用TMS320LF2407A。DSP芯片是一種具有特殊結構的微處理器。芯片內部采用程序和數據分開的哈佛結構,具有專門的硬件乘法器,廣泛采用流水線操作,并提供特殊的DSP指令,可以快速地實現各種數字信號處理算法。TMS320LF240X是德州儀器(TI)公司推出的基于C2



          評論


          相關推薦

          技術專區(qū)

          關閉