DSP在電力系統(tǒng)多通道同步交流采樣中應(yīng)用
隨著我國電力事業(yè)的快速發(fā)展,電力系統(tǒng)對發(fā)、輸、配、用電量的采集也有了更高的要求。電量采集作為電力系統(tǒng)實(shí)時(shí)控制、監(jiān)測、調(diào)度自動(dòng)化的前提環(huán)節(jié),毫無疑問具有重要的作用。但在電量采集過程中,由于存在諧波等干擾因素,因此如何準(zhǔn)確、快速地采集電力系統(tǒng)中的各個(gè)模擬量一直是電力系統(tǒng)研究中的熱點(diǎn)[1]。
1 總體設(shè)計(jì)
圖1 交流采樣模塊硬件結(jié)構(gòu)框圖
2 采樣系統(tǒng)的硬件設(shè)計(jì)
交流采樣模塊的硬件結(jié)構(gòu)如圖1所示,它包括隔離變換電路、通道選擇電路、限幅電路、同步方波變換電路、模/數(shù)轉(zhuǎn)換及控制電路等。
隔離變換電路中利用帶有磁補(bǔ)償?shù)幕魻杺鞲衅鲗⑾嚓P(guān)PT、CT送來的電壓、電流信號轉(zhuǎn)換為同波形A/D通道允許的弱電電壓信號。通道選擇電路利用兩片2選1模擬多路選擇器MC14053B,通過不同的編址選出不同的A、B兩組,同時(shí)采樣六通道模擬量。這兩部分電路比較簡單,不予詳述。
2.1 限幅電路
圖2 雙向限幅電路
2.2 同步方波變換電路及頻率采樣
為了保證勵(lì)磁裝置采樣的精度,必須使采樣頻率具有快速的自適應(yīng)能力,同步跟蹤機(jī)端電量的頻率變化。 如圖3 所示,所設(shè)計(jì)的同步方波變換電路由遲滯電壓比較電路、高速光耦、鎖相倍頻電路和脈沖整形電路組成。其中,由U1A (LM339的1/4)和Q1 (9012) 組成的遲滯比較電路將正弦波輸入信號變?yōu)?~5V的同頻率方波信號,同時(shí)利用遲滯電壓特性消除輸入信號在過零點(diǎn)可能出現(xiàn)的抖動(dòng)現(xiàn)象。高速光耦6N137把模擬部分和數(shù)字部分電路隔離開,同時(shí)進(jìn)一步隔離了強(qiáng)弱電之間的電氣連接。鎖相倍頻電路由鎖相環(huán)電路U2(CD4046)和十進(jìn)制分頻電路CD4017組成,按每周波采樣40點(diǎn)計(jì)算,兩片CD4017完成40分頻。由于鎖相環(huán)的相位負(fù)反饋?zhàn)饔?當(dāng)鎖相環(huán)鎖定時(shí)(D5為鎖定指示燈),U6_7 的輸出信號與U2_14的輸入信號同步,也即與正弦輸入信號同步,此時(shí)U2_4的輸出信號頻率為正弦信號頻率的40倍,并且跟隨其同步變化。
U6_7輸出的同步信號經(jīng)分壓后,被送入TMS320F2812的捕獲模塊CAP1,用于頻率的測量,以滿足勵(lì)磁控制中后續(xù)的電力系統(tǒng)穩(wěn)定器(PSS)和V/F限制的需要。U2_4輸出的同步倍頻信號經(jīng)CD4528脈寬整形后得到合適的脈沖信號,作為A/D采樣保持的觸發(fā)信號。本采樣模塊通過硬件鎖相同步,避免了軟件同步中的中斷響應(yīng)時(shí)間不確定性,可以獲得更高的同步精度。如果需要改變每周波采樣的點(diǎn)數(shù),僅需改變CD4017引腳復(fù)位的連線即可。
圖3 同步方波變換及鎖相環(huán)倍頻電路(點(diǎn)擊查看大圖)
2.3 模/數(shù)轉(zhuǎn)換及控制電路
TMS320F2812芯片上有一個(gè)12位、轉(zhuǎn)換頻率為25MHz的A/D轉(zhuǎn)換器,其前端為兩個(gè)8選1的多路切換器和兩路同時(shí)采樣/保持器,在要求不很高時(shí)完全可利用其構(gòu)成同步順序采樣電路,或者增加外部采樣保持器后構(gòu)成同步采樣。考慮到發(fā)電機(jī)勵(lì)磁控制裝置電量檢測的重要性和其對電量采集精度、速度的較高要求,本系統(tǒng)采樣模塊中選用了外置的六通道16位模/數(shù)轉(zhuǎn)換器ADS8364。其內(nèi)部包括六個(gè)高速采樣-保持放大器、六個(gè)高速ADC、一個(gè)參考電壓源及三個(gè)參考電壓緩沖器,可以提供250kSPS的同步采樣率,還可提供具有超低功耗(69mW/每通道)的所有六個(gè)輸入通道的轉(zhuǎn)換,這樣使得所有通道的單位成本均較低[5]。并且六個(gè)通道的數(shù)據(jù)輸出接口電壓介于2.7V到5.5V之間,便于與DSP直接接口,省去了中間的電平轉(zhuǎn)換。六個(gè)完全獨(dú)立的ADC可大大提高硬件整體的并行處理速度, 在 50kHz輸入信號下仍可保證大于80dB的卓越共模抑制能力,特別適合于諸如發(fā)動(dòng)機(jī)控制及能量轉(zhuǎn)換等高干擾環(huán)境中。圖4所示為模/數(shù)轉(zhuǎn)換及控制電路,ADS8364的每通道的差分輸入V+IN都需經(jīng)比例運(yùn)算放大器和電平自舉電路將雙極性交流信號轉(zhuǎn)換為0~5V的信號。A/D轉(zhuǎn)換器的最大時(shí)鐘頻率為5MHz,由TMS320F2812的PWM1口提供,ADD和BYTE位設(shè)為低電平,IOPF0控制ADS8364的復(fù)位啟動(dòng),三對(六通道)采樣保持觸發(fā)信號來源于同步倍頻的輸出信號HOLD,每對通道轉(zhuǎn)換完畢后由EOC向XINT1發(fā)出外部中斷請求,TMS320F2812響應(yīng)中斷請求后,通過地址線選通對應(yīng)通道,將轉(zhuǎn)換所得數(shù)據(jù)由數(shù)據(jù)線讀入。
圖4 模/數(shù)轉(zhuǎn)換及控制電路
圖5 同步采樣軟件主程序流程圖(點(diǎn)擊查看大圖)
3 采樣系統(tǒng)的軟件設(shè)計(jì)
本采樣系統(tǒng)的軟件結(jié)構(gòu)較為復(fù)雜,涉及的算法也較多,為了便于調(diào)試和維護(hù),軟件設(shè)計(jì)遵循模塊化、自頂向下、逐步細(xì)化的編程思想。軟件采用C語言和匯編語言混合編程,主要軟件可劃分為主程序、采樣中斷服務(wù)子程序、頻率捕獲中斷服務(wù)子程序三大模塊。圖5所示是主程序流程圖,軟件的工作過程是:系統(tǒng)上電復(fù)位后,首先按照所選定的模式(調(diào)試時(shí)為Jump to H0 SRAM模式,實(shí)際應(yīng)用時(shí)為Jump to Flash模式)自舉加載程序,跳轉(zhuǎn)到主程序入口;然后進(jìn)行相關(guān)變量、數(shù)據(jù)緩沖區(qū)、控制寄存器、狀態(tài)寄存器的初始化;調(diào)用事件管理器EV初始化程序,設(shè)定PWM1的周期(5MHz)、占空比,捕獲單元CAP1時(shí)基T2的輸入時(shí)鐘分頻數(shù)、周期,并啟動(dòng)T1、T2;初始化外設(shè)擴(kuò)展中斷PIE,使能所用到的外部中斷XINT1和捕獲中斷,清中斷標(biāo)志位,開全局中斷;而后復(fù)位并初始化外部的ADS8364,等待外部中斷,在中斷服務(wù)子程序中將A/D轉(zhuǎn)換后所得數(shù)據(jù)讀入所分配的數(shù)據(jù)緩沖區(qū),待周波采樣完畢后,根據(jù)原通道采樣物理量(交流、直流)調(diào)用不同的數(shù)字濾波程序,對數(shù)據(jù)處理后,調(diào)用各計(jì)算子程序,計(jì)算所需的有效值、有功功率、無功功率、功率因數(shù)、平均值。采樣中斷子程序和頻率捕獲中斷服務(wù)子程序的流程圖如圖6所示,其中頻率捕獲中斷的時(shí)基精度為0.43μs。TMS320F2812為定點(diǎn)DSP,為了提高運(yùn)算的精度和速度,軟件設(shè)計(jì)中充分利用TI 公司提供的IQmath Library 以實(shí)現(xiàn)浮點(diǎn)運(yùn)算與定點(diǎn)程序代碼的無縫接口,簡化了程序的開發(fā),并大大提高了程序運(yùn)行的實(shí)時(shí)性[6]。
(a) A/D轉(zhuǎn)換中斷服務(wù)子程序流程圖
(b) 頻率捕獲中斷服務(wù)子程序流程圖
圖6
本文所設(shè)計(jì)的同步采樣模塊已經(jīng)通過各種功能測試,達(dá)到了預(yù)期的目標(biāo)。該方案的硬件設(shè)計(jì)和軟件編程對提高能源、冶金等行業(yè)中多通道電量同步采集的速度和精度有一定的借鑒意義。其中的子程序具有良好的可移植性,對其它DSP應(yīng)用系統(tǒng)的設(shè)計(jì)也有一定的參考價(jià)值。
評論