基于LED串的DCM升壓轉換器設計
0 引言
本文引用地址:http://cafeforensic.com/article/246215.htm固定頻率升壓轉換器非常適合于以恒流模式驅動LED串。這種轉換器采用不連續(xù)導電模式(DCM)工作,能夠有效地用于快速調光操作,提供比采用連續(xù)導電模式(CCM)工作的競爭器件更優(yōu)異的瞬態(tài)響應。當LED導通時,DCM工作能夠提供快速的瞬態(tài)性能,為輸出電容重新充電,因而將LED的模擬調光降至最低。為了恰當?shù)胤€(wěn)定DCM升壓轉換器,存在著小信號模型。然而,驅動LED的升壓轉換器的交流分析,跟使用標準電阻型負載的升壓轉換器的交流分析不同。由于串聯(lián)二極管要求直流和交流負載條件,在推導最終的傳遞函數(shù)時必須非常審慎。
本方案先將使用基于所研究轉換器之輸出電流表達式的簡化方法。然后將深入研究應用方案,驗證測量精度,并與理論推導進行比較,最終驗證了本方案的實用性。
第1部分:的驅動LED串的DCM升壓轉換器的理論
1 驅動LED串以發(fā)光的升壓轉換器
圖1顯示了驅動LED串的恒定頻率峰值電流工作模式升壓轉換器的簡化電路圖。輸出電流被感測電阻Rsense持續(xù)監(jiān)測。相應的輸出電壓施加在控制電路上,持續(xù)調節(jié)電源開關的導通時間,以提供恒定的LED電流Iout.這就是受控的輸出變量。
?
?
圖1:動LED串以發(fā)光的升壓轉換器
發(fā)光時, LED串會在LED連接的兩端產生電壓。這電壓取決于跟各個LED技術相關的閾值電壓VT0及其動態(tài)阻抗rd.因此,LED串兩端的總壓降就是各LED閾值電壓之和VZ,而而動態(tài)阻抗rLEDs表示的是LED串聯(lián)動態(tài)阻抗之和。圖2顯示的是采用的等效電路。您可以自己來對LED串壓降及其總動態(tài)阻抗進行特征描述。為了測量起見,將LED串電流偏置至其額定電流IF1.一旦LED達到熱穩(wěn)定,就測量LED串兩端的總壓降Vf1.將電流改變?yōu)樯缘椭礗F2并測量新的壓降VF2.根據(jù)這些值,您可計算出總動態(tài)阻抗,即:
?
?
“齊納”電壓約等于LED串電壓VF1減去rLEDs與測量點電流之積:
?
?
圖2:LED采用串聯(lián)連接
需對它們的閾值電壓進行累加;而總動態(tài)阻抗是串聯(lián)連接的各個LED動態(tài)阻抗之和?;仡^再看圖1,LED串與感測電阻Rsense串聯(lián)??偨涣?ac)阻抗因此就是兩者之和:
?
?
圖3是大幅簡化的等效直流(dc)電路圖。直流輸出電壓Vout等于輸出電流Iout與電阻Rac之積再加齊納電壓,在交流條件下,由于齊納電壓恒定,故上述等式可簡化為:
?
?
圖3:直流簡化電路圖
2 簡化模型
電流源實際上指的是從輸入電源獲得并無損耗地傳輸?shù)捷敵龅碾娏?。電流源可以被控制電壓Vc向上或向下調節(jié),而Vc逐周期設定電感峰值電流。控制器通過升壓轉換器開關電流感測電阻Ri來觀測電感峰值電流,并以此工作。當Ri兩端電壓與控制電壓匹配時,電源開關就被指示關閉。如果我們現(xiàn)在來考慮交流電路圖,就要考慮電容及其寄生元件,如圖4所示。
?
?
圖4:交流模型使用跟電容模型相關的總阻抗Rac
在存在補償斜坡的情況下,控制電壓不再是固定的直流電壓,而是斜率會影響最終峰值電流設定點的斜坡電壓。圖5顯示了最終波形。到達峰值電流值的時間比不存在斜坡的情況下更快,就好像我們會人為增加電流控制感測電阻Ri一樣。它有降低電流控制環(huán)路增益及降低連續(xù)導電模式(CCM)下兩個極點的作用。當轉換器過渡到DCM時,仍然存在斜坡,必須予以顧及。
?
?
圖5:由于補償斜坡的緣故,峰值電流并不等于控制電壓除以Rsense
3 完整交流模型
既然我們已經(jīng)推導出所有系數(shù),我們就可以更新原先圖4中中所示的模型。更新的電路圖如圖6示。R1對應于等式(20)中的系數(shù),并可推導出與輸出電壓調制直接成正比的電流。
?
?
圖6:交流模型圖
4 應用脈寬調制(PWM)進行調光控制
我們將使用下面的值來檢驗我們的計算。這是一款DCM升壓轉換器,為22V壓降的LED串提供恒定功率,詳細參數(shù)參看附件。
?
?
圖7:平均模型幫助驗證工作偏置點及交流響應
評論