基于微波諧振腔的葡萄糖溶液濃度測(cè)量系統(tǒng)
由上式可以看出,測(cè)量頻率的相對(duì)誤差與被測(cè)信號(hào)頻率無關(guān),僅與標(biāo)準(zhǔn)頻率和閘門時(shí)間有關(guān),本頻率測(cè)量系統(tǒng)選擇的標(biāo)準(zhǔn)頻率為50 MHz,實(shí)際閘門時(shí)間為1 s,則頻率測(cè)量誤差為2×10-8。
表1給出了在標(biāo)準(zhǔn)頻率為50MHz,被測(cè)頻率取不同值時(shí)的測(cè)量數(shù)據(jù)。選取的閘門時(shí)間為1s,標(biāo)準(zhǔn)頻率和被測(cè)頻率均先進(jìn)行10位分頻,通過計(jì)算可知本測(cè)量方法實(shí)現(xiàn)了對(duì)被測(cè)信號(hào)的等精度測(cè)量。
4 實(shí)驗(yàn)結(jié)果及分析
當(dāng)溫度為298.15K時(shí),系統(tǒng)選擇濃度為100 mmol/kg、200 mmol/kg、300 mmol/kg、400 mmol/kg、500 mmol/kg、600 mmol/kg的葡萄糖溶液濃度進(jìn)行頻率測(cè)量,得到的波形圖如圖8所示。由圖8可知,隨著溶液濃度的增加諧振腔的諧振頻率偏移量線性上升。當(dāng)溶液濃度變化1 mmol/kg時(shí),頻率偏移量變化接近100 KHz,因此諧振頻率的變化靈敏測(cè)量的精度高。當(dāng)測(cè)量得到諧振頻率偏移量后根據(jù)圖6的對(duì)應(yīng)關(guān)系,就可以得到對(duì)應(yīng)的溶液濃度。如表1系統(tǒng)可精確測(cè)量10 kHz, 因此系統(tǒng)測(cè)量葡萄糖溶液濃度分辨率可達(dá)0.01 mmol/Kg。
5 結(jié)論
本文根據(jù)諧振腔微擾原理設(shè)計(jì)了葡萄糖溶液濃度測(cè)量系統(tǒng),在溶液濃度測(cè)量系統(tǒng)框圖的基礎(chǔ)上,設(shè)計(jì)了以單片機(jī)為處理核心的控制系統(tǒng),其中包括自動(dòng)頻率跟蹤系統(tǒng)和頻率測(cè)量系統(tǒng)。自動(dòng)頻率跟蹤系統(tǒng)保證了VCO的輸出頻率和諧振頻率實(shí)時(shí)保持一致,頻率測(cè)量系統(tǒng)利用可編程邏輯器件FPGA實(shí)現(xiàn)邏輯功能,采用等精度頻率測(cè)量方法,使設(shè)計(jì)簡(jiǎn)單、集成度高、測(cè)量精度高。
參考文獻(xiàn):
[1] 俞令蔚, 楊文龍, 于蓮芝. 基于虛擬儀器的溶液濃度測(cè)量系統(tǒng)[J]. 微計(jì)算機(jī)信息, 2009, 25 (11):115-116<br />
[2] lozny L, Sato A, Kubota N. On-line measurement of super saturation during batch cooling crystallization of ammonium alum[J]. J. Chem. Engng. Japan, 1992, 25:604~606<br />
[3] Patience D B, Rawlings J B, Mohameed HA. Crystallization of para-xylene in scraped-surface crystallizers[J]. A IChE J, 2001, 47(11): 2441-2451<br />
[4] Yoshio N, Yong G. Dynamic Measurement of Temperature Dependent Complex Permittivity of Material by Microwave Heating Using Cylindrical Cavity Resonator[C]. Proceedings of Asia-Pacific Microwave Conference, IEEE Press, 2007:1-4<br />
[5] Gouveia D X., Costa L C, Valente M A.. Resonant cavity for the measurement of microwave magnetic permeability using the small perturbation theory[J]. Microwave and Optical Technology Letters, 2008, 50(2):399-402<br />
[6] Lobato M, Humberto, Corona-Chavez. Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities[J]. Review of Scientific Instruments, 2010, 81(6):064704- 064704-4<br />
[7] 陳玉娟, 卓克壘, 康磊, 等. 278.15-313.15K下糖-水二元體系的介電常數(shù)[J]. 物理化學(xué)學(xué)報(bào), 2008, 24(1):91-96<br />
[8] Abaeiani, G, Ahmadi V, Saghafi, K. Design and analysis of resonant cavity enhanced waveguide photo detectors for microwave photonics applications[J]. Photonics Technology Letters, 2006, 18(15):1597-1599<br />
[9] Li L, Chen X M, Ni L, et al. Evaluation of microwave dielectric properties of giant permittivity materials by a modified resonant cavity method[J]. Applied Physics Letters, 2007, 91(9): 092906- 092906-3<br />
[10] Zhang Y W, Liu G B. Analysis of resonance frequency for rectangular cavity with apertures and embedded materials[C]. Intelligent Computing and Intelligent Systems, IEEE Press, 2010:271-273
帶通濾波器相關(guān)文章:帶通濾波器設(shè)計(jì)
評(píng)論