基于電荷泵改進(jìn)型CMOS模擬開關(guān)電路
當(dāng)前VLSI技術(shù)不斷向深亞微米及納米級發(fā)展,模擬開關(guān)是模擬電路中的一個十分重要的原件,由于其較低的導(dǎo)通電阻,極佳的開關(guān)特性以及微小封裝的特性,受到人們的廣泛關(guān)注。模擬開關(guān)導(dǎo)通電阻的大小直接影響開關(guān)的性能,低導(dǎo)通電阻不僅可以降低信號損耗而且可以提高開關(guān)速度。要減小開關(guān)導(dǎo)通電阻,可以通過采用大寬長比的器件和提高柵源電壓的方法,可是調(diào)節(jié)器件的物理尺寸不可避免地會帶來一些不必要的寄生效應(yīng),比如增大器件的寬度會增加器件面積進(jìn)而增加?xùn)烹娙?,脈沖控制信號會通過電容耦合到模擬開關(guān)的輸入和輸出,在每個開關(guān)周期其充放電過程中會消耗更多的電流,時間常數(shù)t=RC,充放電時間取決于負(fù)載電阻和電容,使得開關(guān)的速度變慢,同時增大寬長比也增加了器件的成本。當(dāng)前減小導(dǎo)通電阻的普遍辦法是提高開關(guān)管的柵電壓。
本文引用地址:http://cafeforensic.com/article/275625.htm1傳統(tǒng)模擬開關(guān)原理及柵增壓原理
圖1傳統(tǒng)模擬開關(guān)
在MOS技術(shù)中,傳統(tǒng)的開關(guān)實現(xiàn)就是一個PMOS管和一個NMOS管并聯(lián),如圖1所示,A和B兩端分別為傳送信號的輸入、輸出端,兩個管子的柵極分別由極性相反的信號來控制。由于MOS管的源極和漏極可以互換,因此這個電路的輸入、輸出端也可以互換,它可以控制信息雙向流通,就像一個雙向開關(guān)。工作過程:當(dāng)控制信號S=1時,PMOS管和NMOS管均導(dǎo)通,傳輸門接通,信號暢行無阻;當(dāng)控制信號S=0時,PMOS管和NMOS管均截止,傳輸門關(guān)閉,開關(guān)斷開。當(dāng)一管的導(dǎo)通電阻減小,則另一管的導(dǎo)通電阻就增加。由于兩管是并聯(lián)運行,可近似地認(rèn)為開關(guān)的導(dǎo)通電阻近似為一常數(shù)。這是CMOS傳輸門的優(yōu)點。
1.1模擬開關(guān)分析
CMOS開關(guān)的導(dǎo)通電阻為:
導(dǎo)通電阻將不隨輸入信號改變而改變,可等效為一個恒定阻值的電阻,如式(3),不會引起模擬信號的失真,由于導(dǎo)通電阻是由兩個電阻并聯(lián),所以阻值較單管開關(guān)小得多,使得開關(guān)速率又得到提高。從式(3)中可以知道MOS開關(guān)為了能提高速度和精度,需要抬高NMOS管的柵電壓。增加?xùn)烹妷鹤钪苯拥霓k法就是提高電路的電源低壓,但是從低電壓系統(tǒng)角度來說這增加了成本,因此需要加一個電源電路,最好的辦法是芯片內(nèi)部產(chǎn)生一個電壓來增加?xùn)烹妷骸?/p>
1.2柵增壓原理
柵增壓原理是依靠電荷泵的工作原理:先貯存能量,然后以受控方式釋放能量,以獲得所需的輸出電壓。本文中所用的電容式電荷泵采用電容器來貯存能量,通過電容對電荷的積累,電容A端接時鐘信號Clk,當(dāng)A點電位為0時,B點電位為Vdd;當(dāng)A點電位為Vdd時,由于電容兩端的電壓不會突變,理想情況下,此時B點電位被抬升為2Vdd,因為電荷泵的有效開環(huán)輸出電阻存在,使得實際情況B點電位低于2Vdd.
圖2柵增壓基本電路
電容器相關(guān)文章:電容器原理
模擬信號相關(guān)文章:什么是模擬信號
電路相關(guān)文章:電路分析基礎(chǔ)
電荷放大器相關(guān)文章:電荷放大器原理
評論