電力數(shù)據(jù)采集A/D轉(zhuǎn)換器的選擇方案
0 引 言
本文引用地址:http://cafeforensic.com/article/85787.htm當(dāng)今社會對電能質(zhì)量的要求越來越高,國家還專門制定了電能質(zhì)量的國家標(biāo)準(zhǔn)。因此,電能質(zhì)量的測量越來越得到電力用戶的重視。電能測量時,從電網(wǎng)的數(shù)據(jù)采集結(jié)果對其精度的影響起著致關(guān)重要的作用,而這其中影響最大的是把模擬信號轉(zhuǎn)換為數(shù)字信號的模數(shù)轉(zhuǎn)換器(ADC),往往A/D芯片的技術(shù)參數(shù)和指標(biāo)就決定了整個數(shù)據(jù)采集系統(tǒng)的性能指標(biāo)。本文就電能測量ADC的選擇作了綜述。
1 A/D轉(zhuǎn)換器的技術(shù)參數(shù)
A/D轉(zhuǎn)換器的技術(shù)參數(shù)反映了其性能特點,其主要的指標(biāo)有以下幾個:
(1)分辨率:分辨率反映A/D轉(zhuǎn)換器對輸入微小變化響應(yīng)的能力,通常用數(shù)字輸出最低位(LSB)所對應(yīng)的模擬輸入的電平值表示。
(2)精度:精度有絕對精度和相對精度兩種表示方法。絕對誤差:是指對應(yīng)于一個數(shù)字量的實際模擬輸入電壓和理想的模擬輸入電壓之差的最大值,通常以數(shù)字量的最小有效位(LSB)的分?jǐn)?shù)值來表示。相對誤差:是指整個轉(zhuǎn)換范圍內(nèi),任一數(shù)字量所對應(yīng)的模擬輸入量的實際值與理論值之差,用模擬電壓滿量程的百分比表示。
(3)轉(zhuǎn)換時間:轉(zhuǎn)換時間是指完成一次A/D轉(zhuǎn)換所需的時間,即由發(fā)出啟動轉(zhuǎn)換命令信號到轉(zhuǎn)換結(jié)束信號開始有效的時間間隔,其倒數(shù)稱為轉(zhuǎn)換速率。例如MAX125的轉(zhuǎn)換時間為3μs,其轉(zhuǎn)換速率約為330多kHz。
(4)電源靈敏度:電源靈敏度是指A/D轉(zhuǎn)換芯片的供電電源的電壓發(fā)生變化時,產(chǎn)生的轉(zhuǎn)換誤差。一般用電源電壓變化1%時相應(yīng)的模擬量變化的百分?jǐn)?shù)來表示。
(5)量程:量程是指所能轉(zhuǎn)換的模擬輸入電壓范圍,分單極性、雙極性兩種類型。
A/D轉(zhuǎn)換器實際工作時,都會引入一些誤差,主要包括:靜態(tài)誤差、孔徑誤差和量化誤差。各種誤差都是以最低有效位(LSB)作為計算單位。1LSB定義為VREF/2n,定義中的VREF是指參考電壓,而n則是模擬/數(shù)字轉(zhuǎn)換器的分辨率。例如,14位模擬/數(shù)字轉(zhuǎn)換器的1 LSB是VREF/16 384。
(1)靜態(tài)誤差:當(dāng)轉(zhuǎn)換一個直流信號時,靜態(tài)誤差可由失調(diào)誤差、增益誤差、非線性誤差和微分非線性誤差表示。 失調(diào)誤差:失調(diào)誤差就是實際ADC轉(zhuǎn)換函數(shù)曲線與理想轉(zhuǎn)換曲線間得偏移,即實際曲線發(fā)生了平移現(xiàn)象。
增益誤差:增益誤差就是滿量程誤差與失調(diào)誤差之差。
非線性誤差:非線性誤差就是指轉(zhuǎn)換器的實際傳輸特性曲線與它的平均傳輸特性曲線之間的最大偏差。
微分非線性誤差:它表示了輸出碼與其相鄰代碼的間隔,是通過測量輸入電壓的變化,并轉(zhuǎn)換到以LSB為單位,也就是我們通常所說的±1LSB,±0.5LSB等指標(biāo)。
(2)孔徑誤差:由于采樣時鐘或輸入信號的噪聲,使得采樣和保持之間延遲引起的誤差。
(3)量化誤差:A/D變換器的量化誤差決定于A/D變換器的轉(zhuǎn)換特性,這種誤差是由轉(zhuǎn)換特性造成的,是一種原理性誤差,無法消除。A/D變換器選定以后,其量化誤差也隨之確定了。量化誤差和分辨率是統(tǒng)一的,量化誤差是由于有限數(shù)字對模擬數(shù)字進(jìn)行離散取值(量化)而引起的誤差。因此,量化誤差理論上為一個單位分辨率,即1LSB,提高分辨率可減少量化誤差。
上述這些誤差構(gòu)成了A/D變換器的總誤差。在考慮上述各種誤差的綜合影響時,A/D變換器的總誤差應(yīng)該用各種誤差的均方根來表示。
2 A/D轉(zhuǎn)換器選擇的理論分析
2.1概述
采樣處理過程受ADC轉(zhuǎn)換精度和轉(zhuǎn)換速率的限制。一方面,對于具體的模數(shù)轉(zhuǎn)換器,它的數(shù)據(jù)位所能代表的精度是由ADC的轉(zhuǎn)換位數(shù)來決定的。另一方面,每一個模數(shù)轉(zhuǎn)換器的轉(zhuǎn)換數(shù)據(jù)在被讀取之前都要有轉(zhuǎn)換時間。數(shù)據(jù)位越多,則轉(zhuǎn)換時間越長,相應(yīng)的轉(zhuǎn)換速率也就越慢。這就要求ADC的轉(zhuǎn)換精度和轉(zhuǎn)換速率之間做出一個折衷的解決辦法。對轉(zhuǎn)換精度和轉(zhuǎn)換速率要求越高,模數(shù)轉(zhuǎn)換越困難,根據(jù)現(xiàn)在的市場上可提供的和價格合理的模數(shù)轉(zhuǎn)換器,文獻(xiàn)[3]作了一個大概的估計。如圖1所示,它描述了ADC的轉(zhuǎn)換精度與轉(zhuǎn)換速率之間的一種關(guān)系。
圖1的左邊上方的區(qū)域代表的是容易獲得的,到右邊的底部區(qū)域則幾乎是不可能實現(xiàn)的。中間的那條實線表示的是當(dāng)前市場上,在合理的價格基礎(chǔ)上,可以提供的典型的ADC的性能。它們做為現(xiàn)在已有的ADC性能的代表,可以在電能質(zhì)量測量中選用,例如MAX125。
評論