三相混合式多細分步進電機驅(qū)動器簡介
本文根據(jù)正弦電流細分驅(qū)動的原理,設計出三相混合式多細分步進電機驅(qū)動器。系統(tǒng)采用電流跟跟蹤和脈寬調(diào)制技術,使用電機的相電流為相位相差120°的正弦波。該驅(qū)動器解決了傳統(tǒng)步進電機低速振動大、有共振區(qū)、噪音大等缺點,提高了步距角分辨率和驅(qū)動器的可靠性。 步進電機是一種開環(huán)伺服運動系統(tǒng)執(zhí)行元件,以脈沖方式進行控制,輸出角位移。與交流伺服電機及直流伺服電機相比,其突出優(yōu)點就是價格低廉,并且無積累誤差。但是,步進電機運行存在許多不足之處,如低頻振蕩、噪聲大、分辨率不高等到,又嚴重制約了步進電機的應用范圍。步進電機的運行性能與它的驅(qū)動的應用范圍。步進電機的運行性能與它的驅(qū)動器有密切的聯(lián)系,可以通過驅(qū)動技術的改進來克服步進電機的缺點。相對于其他的驅(qū)動方式,細分驅(qū)動方式不僅可以減小步進電機的步距角,提高分辨庇,而且還可以減小步進電機的步距角,提高分辨率,而且還可以減少或消除低頻振動,使電機運行更加平穩(wěn)均勻??傮w來說,細分驅(qū)動的控制效果最好。因為常用低端步進電機伺服系統(tǒng)沒有編碼器反饋,所以隨著電機速度的升高其內(nèi)部控制電流相應減小,從而造成丟步現(xiàn)象。所以在速度和精度要求不高的領域,其應用非常廣泛。 因為三相混合式步進電機比二相步進電機有更好的低速平穩(wěn)性及輸出力矩,所以三相混合式步進電機比二相步進電機有更好應用前景。傳統(tǒng)的三相混合式步進電機控制方法都是以硬件比較器完成,本文主要講述使用DSP及空間矢量算法SVPWM來實現(xiàn)三相混合式步進電機的控制。 細分原理 步進電機的細分控制從本質(zhì)上講是通過對步進電機的定子繞組中電流的控制,使步進電機內(nèi)部的合成磁場按某種要求變化,從而實現(xiàn)步進電機步距角的細分。最佳的細分方式是恒轉(zhuǎn)矩等步距角的細分。一般情況下,合成磁場矢量的幅值決定了電機旋轉(zhuǎn)力矩的大小,相鄰兩合成磁場矢量的之間的夾角大小決定了步距角的大小。在電機內(nèi)產(chǎn)生接近均勻的圓形旋轉(zhuǎn)磁場,各相繞組的合成磁場矢量,即各相繞組電流的合成矢量應在空間作幅值恒定的旋轉(zhuǎn)運動,這就需要在各相繞相中通以正弦電流。 三相混合式步進電機的工作原理十分類似于永磁同步伺服電機。其轉(zhuǎn)子上所用永磁磁鐵同樣是具有高磁密特性的稀土永磁材料,所以在轉(zhuǎn)子上產(chǎn)生的感應電流對轉(zhuǎn)子磁場的影響可忽略不計。在結(jié)構(gòu)上,它相當于一種多極對數(shù)的交流永磁同步電機。由于輸入是三相正弦電流,因此產(chǎn)生的空間磁場呈圓形分布,而且可以用永磁式同步電機的結(jié)構(gòu)模型(見圖1)分析三相混合式步進電機的轉(zhuǎn)矩特性。為便于分析,可做如下假設: ·電機定子三相繞組完全對稱; ·磁飽和、渦流及鐵心損耗忽略不計; ·激磁電流無動態(tài)響應過程。 U、V、W為定子上的3個線圈繞組,3個線圈繞組的軸線互差120°。電機單相繞組通電的時候,穩(wěn)態(tài)轉(zhuǎn)矩可以表達為: T=f(i,θ) 式中:i為繞組中通過的電流; θ為電機轉(zhuǎn)子偏離參考點的角度。 由于磁飽和效應可以忽略不計,并且轉(zhuǎn)子結(jié)構(gòu)是圓形,其矩角特性為嚴格的正弦,即 T=kIKsin(θ) 式中,k為轉(zhuǎn)矩常數(shù)。 若理想的電流源以恒幅值為I的三相平衡電流iU、iV、iW供給電機繞組,即: iU=Isin(ωt) iV =Isin(ωt-2π/3) iW=Isin(ωt+2π/3) 則電機各相電流產(chǎn)生的穩(wěn)態(tài)轉(zhuǎn)矩為: TU=kIsin(θ) TV=kIsin(θ-2π/3) TW= kIsin(θ+2π/3) 穩(wěn)態(tài)運行時,θ=ωt,則三相繞組產(chǎn)生的合成轉(zhuǎn)矩為: T=TU+TV+TW=(3/2)kIsin(π/2-ωt+θ)kI 以上分析表明,對于三相永磁同步電機,當三相繞組輸入三相對稱的正弦電流時,由于在內(nèi)部產(chǎn)生圓形旋轉(zhuǎn)磁場,電機的輸出轉(zhuǎn)矩為恒值。因此,將交流伺服控制原理應用到三相混合式步進電機驅(qū)動系統(tǒng)中,輸入的220V交流,經(jīng)整流后變?yōu)橹绷鳎俳?jīng)脈寬調(diào)制技術變?yōu)槿冯A梯式正弦波形電流(見圖2),它們按固定時序分別流過三路繞組,其每個階梯對應電機轉(zhuǎn)動一步。通過改變驅(qū)動器輸出正弦電流的頻率來改變電機轉(zhuǎn)速,而輸出的階梯數(shù)確定了每步轉(zhuǎn)過的角度,當角度越小的時候,那么其階梯數(shù)就越多,即細分就越大,從理論上說此角度可以設得足夠的小,所以細分數(shù)可以是很大,而交流伺服控制的每步角度與反饋的編碼器的精度有很大的關系,一般使用的為2500線,所以每一步轉(zhuǎn)過的角度僅為0.144°(即360/2500),而此方法控制的步進電機,比如其細分數(shù)為10000,則每一步轉(zhuǎn)過的角度為0.036°,所以比一般的伺服控制精度高很多。當然,步進電機轉(zhuǎn)動時,電機各相繞組的電感將形成一個反向電動勢,頻率越高,反向電動勢越大。在它的作用下,電機隨頻率(或速度)的增大而相電流減小,從而導致力矩下降,通過恒流方式可以使在電機低頻和高頻時保持同樣的相電流從而使高頻的力矩特性有所改善,這只能是在低速時,所以其綜合性能(高、低速噪聲,高速力矩,高速平穩(wěn)性等)很難趕超交流伺服控制系統(tǒng)。 三相混合式步進電機一般把三相繞組連接成星形或者三角形,按照電路基本定理,三相電流之和為零。即iU+iV+iW=0。所以通常只需產(chǎn)生兩相繞組的給定信號,第三相繞組的給定信號可由其它兩相求得。同樣,只需要對相應兩相繞組的實際電流進行采樣,第三相繞組的實際電流可根據(jù)式求得。 三相混合式步進電機驅(qū)動器的系統(tǒng)構(gòu)成 驅(qū)動器的總體方案如圖3所示,主要包括單片機電路、電流追蹤型SPWM電路和功率驅(qū)動電路組成。 DSP模塊設計 在這里,筆者選擇了TI公司的DSP作為CPU芯片,DSP(Digital Signal Processor)實際上也是一種單片機,它同樣是將中央處理單元、控制單元和外圍設備集成到一塊芯片上。但它又有自身鮮明的特點——因為采用了多組總線技術實現(xiàn)并行運行的機制,從而大大提高了運算速度,具有更強的運算能力和更好的實時性。本文選用的DSP(TMS320LF2407A)是一款電機控制專用芯片,144引腳,具有豐富的IO資源,含有4個通用定時器,具有兩路專用于控制三相電機的PWM發(fā)生器(可產(chǎn)生六路PWM信號),另外還有專用接收外部脈沖和方向的I/O口,從而簡化了電路設計和程序開發(fā)。 DSP輸入信號包括步進脈沖信號CP、方向控制信號、脫機信號,過流保護信號。這幾種信號均通過高速光耦連接到DSP的引腳上,另外還有細分步數(shù)及電流選擇信號。當脫機信號為有效時,驅(qū)動器輸出到電機的電流被切斷,電機轉(zhuǎn)子處于自由狀態(tài)(脫機狀態(tài))。反饋電流通過DSP自帶的10位模數(shù)轉(zhuǎn)換器(AD)采樣,反饋的電流通過一定的算法后,由DSP自帶的PWM口輸出控制電機。 電流追蹤型回路 這種傳輸方式以模擬電壓的幅值代表采樣電流或者電壓的大小,其主要用來采樣a,b兩相電流及母線電壓檢測,實現(xiàn)電機電流控制以及過壓、欠壓、過流保護。驅(qū)動器通過采樣電阻檢測步進電機繞組的實際電流,與設定電流相比較后經(jīng)過滯環(huán)比較器調(diào)節(jié)器,調(diào)節(jié)器輸出信號經(jīng)過滯環(huán)比較器調(diào)節(jié)器,調(diào)節(jié)器輸出信號由20kHz頻率的三角波輸出,形成空間矢量脈寬調(diào)制信號(SVPWM),通過功率驅(qū)動接口電路來控制大功率半導體器件的導通與關斷,使步進電機的繞組實際電流跟蹤給定參考信號,按給定的正弦規(guī)律變化。 伺服電機相關文章:伺服電機工作原理
評論