色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 電源與新能源 > 設計應用 > 基于FPGA 的諧波電壓源離散域建模與仿真

          基于FPGA 的諧波電壓源離散域建模與仿真

          作者: 時間:2011-01-27 來源:網(wǎng)絡 收藏

          0 引言

          本文引用地址:http://cafeforensic.com/article/179915.htm

          近年來,由于電力電子裝置等非線性負荷的大量增加,電力系統(tǒng)的諧波污染越來越嚴重,嚴重地影響了電能計量的準確性和合理性,由此導致的糾紛也屢見不鮮。因此,研究用于電能計量的諧波電壓源裝置,對電能計量有著非常重要的意義。

          要求用于電能計量的諧波電壓源能模擬21次內(nèi)任意諧波的疊加,因此對采樣頻率要求較高。

          目前,絕大多數(shù)諧波電壓源裝置采用開關功率放大器作為主電路,利用數(shù)字信號處理器(DigitalSignal Processing,DSP) 作為控制芯片。電力電子模型屬于典型的高度并行模型,沒有復雜的控制過程,但對采樣率要求很高。開關器件的開關頻率可達數(shù)百kHz,開關周期為μs 量級,實時系統(tǒng)要能穩(wěn)定工作,其采樣周期應小于開關周期的1 /10,DSP 則就有些顯得力不從心了。

          現(xiàn)場可編程門陣列(Field Programrnable GateArray,F(xiàn)PGA)采樣率很高,適用于高速度要求的并行運算,運算過程簡單。采用FPGA 執(zhí)行運算,不僅能提高采樣精度,還能節(jié)約成本。近年來,隨著技術進步及市場需求量的增加,F(xiàn)PGA 產(chǎn)品單位貨幣所買到的MAC(乘法/累加運算)數(shù)比傳統(tǒng)的DSP 還要高。200 萬門FPGA 可達到1 280 億/s MAC 的性能,比目前最快的DSP 性能還高一個量級,有取代DSP 之勢。因此,將FPGA應用于諧波電壓源的研究中,不失為一種好的思路。

          VHS-ADC 是基于Matlab /Simulink 和FPGA的高速數(shù)字信號處理平臺,采用Virtex-Ⅱ系列FPGA,內(nèi)部擁有豐富的門資源與硬件乘法器,工作頻率可達420 MHz,高速A/D 通道采樣率可達105 MS /s,高速D/A 通道采樣率可達125 MS /s。VHS-ADC 實現(xiàn)了與Simulink 的無縫連接。

          本文在分析系統(tǒng)原理和設計系統(tǒng)參數(shù)基礎上,在Simulink 中搭建了諧波電壓源的連續(xù)域模型,并將其離散化,基于VHS-ADC 平臺搭建了離散域仿真模型。

          1 主電路結構和控制策略

          1. 1 諧波電壓源的主電路結構

          諧波電壓源裝置可模擬電網(wǎng)的各種現(xiàn)場情況,每相的諧波含量各不相同,因此主電路逆變部分采用3 個單相H 橋,每個單相H 橋由4 個開關管IGBT 組成。諧波電壓源裝置的主電路圖如圖1 所示。其中,每個H 橋可以等效為一個可控電壓源,為系統(tǒng)提供頻率、幅值、相位可調的諧波電壓。逆變部分由4 個開關管IGBT 組成,逆變部分的直流側電壓由整流部分提供。整流部分由降壓變壓器和三相不可控整流電路組成,三相市電由降壓變壓器降壓隔離,再經(jīng)三相不可控整流,得到逆變電路所需的穩(wěn)定直流電壓。出口處的電感電容構成單調濾波器,用于濾除載波和高次諧波。

           諧波電壓源裝置主電路

          圖1 諧波電壓源裝置主電路。

          1. 2 諧波電壓源的控制策略

          雙閉環(huán)PI 調節(jié)的控制器簡單,具有一定的魯棒性,在工程控制領域得以廣泛應用。因此,本文采用基于SPWM 的雙閉環(huán)PI 控制策略,雙閉環(huán)PI 控制的原理框圖如圖2 所示。圖2 中,外環(huán)電壓以理想的正弦波作為參考電壓,輸出電壓與參考電壓比較后經(jīng)PI 調節(jié)作為電流內(nèi)環(huán)的參考值,該電流參考值與反饋電流比較,再經(jīng)PI 調節(jié)后與PWM 控制器中的三角波比較,產(chǎn)生PWM 信號驅動逆變器。

          電壓、電流雙閉環(huán)PI 控制原理框圖

          圖2 電壓、電流雙閉環(huán)PI 控制原理框圖。

          本文引入負載電壓瞬時值和濾波電容電流瞬時值作為反饋信號,根據(jù)實際值和期望值的偏差來實時控制輸出電壓波形,保證輸出電壓波形的精度,消除各種非正弦因素和擾動對輸出電壓的影響。由于輸出濾波電容電流是對逆變器輸出電壓的微分,十分微小的電壓變化即可引起電容電流的較大波動。因此,電容電流的引入更能使系統(tǒng)得到良好的動態(tài)性能。

          2 基于VHS-ADC 平臺的系統(tǒng)建模

          基于FPGA 的VHS-ADC 高速信號處理平臺,其模型庫具有豐富的數(shù)字信號處理模型,Simulink自帶的模型庫不能編譯成FPGA 代碼,而Xilink模型庫是基于離散信號z 域的模型。因此,需要構建z 域電力電子仿真模型。

          基于z 域的控制電路VHS-ADC 模型如圖3所示。該模型主要由PWM 發(fā)生器、PI 控制模塊、限幅模塊和死區(qū)模塊組成。三角波用Counter 計數(shù)器產(chǎn)生。圖3 中的Gateway in 為數(shù)據(jù)轉化模塊,將s 域信號轉化為z 域信號。

          控制電路VHS-ADC 模型

          圖3 控制電路VHS-ADC 模型。


          上一頁 1 2 3 下一頁

          關鍵詞: 收發(fā)器

          評論


          相關推薦

          技術專區(qū)

          關閉