全同步數(shù)字頻率計的 VHDL設(shè)計與仿真
1 引 言
頻率測量不僅在工程應(yīng)用中有非常重要的意義,而且在高精度定時系統(tǒng)中也處于核心地位,±1個計數(shù)誤差通常是限制頻率測量精度進 一步提高的重要原因。由于測頻技術(shù)的重要性,使測頻方法也有了很大的發(fā)展,常用數(shù)字頻率測量方法有M法,T法,和M/T(等精度測量法)法。M法,T法, 和M/T法都存在±1個計數(shù)誤差問題:M法存在被測閘門內(nèi)±1個被測信號的脈沖個數(shù)誤差,T法或M/T法也存在±1個字的計時誤差,這個問題成為限制測量 精度提高的一個重要的原因。全同步頻率測量法[1],從根本上消除了限制測量精度提高的±1個計數(shù)誤差問題,從而使頻率測量的精度和性能大為改善。
基于對FPGA器件和EDA技術(shù)以及全同步測頻方法的研究[2,3],介紹一種利用FPGA實現(xiàn)DC~100 MHz全同步數(shù)字頻率計的實現(xiàn)方法,并給出VHDL實現(xiàn)代碼和仿真波形。整個系統(tǒng)在研制的FPGA/CPID實驗開發(fā)系統(tǒng)上調(diào)試通過。本設(shè)計采用了高集成度的現(xiàn)場可編程門陣列(Field Program-mable Gata Array,F(xiàn)PGA)Flex EPF10k20TCl44-4芯片[4],通過軟件編程對目標器件的結(jié)構(gòu)和工作方式進行重構(gòu),能隨時對設(shè)計進行調(diào)整,使得本設(shè)計具有集成度高、結(jié)構(gòu)靈活、開發(fā)周期短、可靠性高的優(yōu)點。
在文獻[2,5]中所描述的等精度頻率測量方法中,其測頻原理如圖1所示。
其 誤差與閘門時間和標準時鐘頻率有關(guān),閘門時間越長,標準時鐘頻率越高,誤差越小。因此,用等精度測頻法時所取的標準時鐘頻率比較高(10 MHz以上),因此±1計數(shù)誤差相對很小。標準時鐘頻率不可能無限制提高,并且隨著頻率提高,產(chǎn)品成本成倍增加,對于生產(chǎn)應(yīng)用沒有意義。因此本設(shè)計用改進 的等精度頻率測量方法--全同步測量來實現(xiàn)數(shù)字頻率計的設(shè)計。在全同步的情況下,閘門信號不僅與被測信號同步,還與標準時鐘同步。其原理圖如圖2所示。
2 全同步測頻原理簡述
由文獻[1,6]可知:設(shè)開啟閘門時脈沖同步時間差為△t1,關(guān)閉閘門時脈沖同步時間差為△t2,脈沖同步檢測最大誤差為△t,則有:△t1≤△t,△t2≤△t。頻率測量的相
對誤差如式(2)所示:
由式(1)可知,誤差只與脈沖檢測電路準確度有關(guān),顯然,控制△t來提高頻率測量精度是有效的,而且實現(xiàn)走來比提高標準時鐘頻率更容易。
在以上分析的基礎(chǔ)上,本設(shè)計采用FPGA來實現(xiàn)全同步數(shù)字頻率計。其系統(tǒng)原理框圖如圖3所示。由圖3可知,設(shè)計的絕大部分由FPGA完成,只有脈沖同步檢測電路由74LS系列與非門來實現(xiàn),以及顯示部分由數(shù)碼管構(gòu)成。
3 全同步數(shù)字頻率計模塊設(shè)計
由系統(tǒng)原理框圖3,則其FPGA內(nèi)部模塊電路設(shè)計原理如圖4所示。
設(shè) 計原理圖主要由以下幾部分組成:脈沖同步檢測電路、2個計數(shù)器、2個鎖存器、控制器、乘法器、除法器、澤碼電路等組成。工作原理如下:被測頻率與標準時鐘 分別送給脈沖同步檢測電路與2個計數(shù)器,當脈沖同步檢測電路檢測到被測頻率與標準時鐘相位同步時,脈沖同步檢測電路發(fā)出同步信號,2個計數(shù)器開始計數(shù),當 脈沖同步檢測電路再次檢測到間步信號時,義發(fā)出同步信號,計數(shù)器停止計數(shù)。同時計數(shù)器的計數(shù)值鎖存到鎖存器,時序乘法器從鎖存器中取得被測頻率的計數(shù)值與 標準時鐘頻率進行乘法運算,然后再將乘法器運算所得的值與標準時鐘的計數(shù)值送給除法器,乘法器的結(jié)果為被除數(shù),標準時鐘的計數(shù)值為除數(shù),運算所得結(jié)果就是 被測信號的頻率,然后冉經(jīng)過二卜進制轉(zhuǎn)換變成BCD碼,送給數(shù)碼管顯示。本設(shè)計采用10 MHz的標準時鐘,由于乘法器輸入是27位二進制,相當于9位10進制數(shù),而10 MHz的標準時鐘為107Hz,因此用被測頻率的計數(shù)值乘以108可得到一位小數(shù)點。
3.1 脈沖同步檢測電路
脈沖同步檢測電路 沒計原理圖如圖5所示。U1~U8為74LS系列與非門,同步檢測電路利用門電路的延時來構(gòu)成。當被測信號及標準時鐘都處在低電平時,U1,U2輸出為高 電平,U3,U4的輸出為高電平,U5,U6輸出為低電平,則U8輸出為低電平。當被測信號(Fx)及標準時鐘的上升沿同時到來時,由于門電路具有延時特 性,因此U1,U2并不馬上變?yōu)榈碗娖剑且?jīng)過一個延時才變?yōu)榈碗娖?。于是U3,U4的輸入端都是高電平,則U3,U4
輸出為低電平,U5,U6的輸出為高電平,則U8輸出為高電平。但是當且儀當Fx與CLK的上升沿在在延時時間內(nèi)同時到達時U8才會輸出高電平。74LS系列與非門的延時最小為4 ns,最大為15 ns,因此最大誤差為11ns。根據(jù)公式(2)得:
當T0為1 s時,其精度可達到10-7,如再減小相位誤差,則可提高頻率計的精確度。
評論