全同步數(shù)字頻率計(jì)的 VHDL設(shè)計(jì)與仿真
3.2 FPGA芯片內(nèi)部模塊電路設(shè)計(jì)和仿真結(jié)果
FPGA芯片內(nèi)部模塊電路設(shè)計(jì)和仿真結(jié)果如圖6到圖9所示。
3.2.1 計(jì)數(shù)器
此 計(jì)數(shù)播為27位二進(jìn)制,具有計(jì)數(shù)使能端(ena)、異步清零端(clr)、時(shí)鐘輸入端(clk)、進(jìn)位輸出端(ov)等。當(dāng)異步清零端(clr)為高電平 時(shí),不管計(jì)數(shù)使能端是否有效,時(shí)鐘上升沿是否到來,計(jì)數(shù)器都立即清零,即q=0。只有異步清零端(clr)為低電平,并且汁數(shù)使能端為高電平,有上升沿到 來時(shí),計(jì)數(shù)器才開始計(jì)數(shù),當(dāng)計(jì)數(shù)器計(jì)滿時(shí),進(jìn)位輸出為高電平。計(jì)數(shù)器VHDL程序仿真圖如圖6所示。
3.2.2 乘法器
由 于本設(shè)計(jì)所用的乘法器位數(shù)較寬,而組合邏輯乘法器位數(shù)越多耗用的硬件資源成倍增長(zhǎng),并且本設(shè)計(jì)不需要有很高的運(yùn)算速度,考慮到硬件資源與運(yùn)算速度,因此采 用時(shí)序電路來實(shí)現(xiàn)乘法器,其原理是通過逐項(xiàng)移位相乘相加來實(shí)現(xiàn)。他是一種犧牲運(yùn)算時(shí)間換取硬件資源的方案。乘法器的VHDL程序仿真圖如圖7所示。
3.2.3 除法器
除法器則可通過移位相減相除來實(shí)現(xiàn),其工作原理與剩法器是一樣的,其VHDL程序仿真圖如圖8所示。
3.2.4 控制器
控 制器工作時(shí)序如下:當(dāng)同步信號(hào)(clk)上升沿到來時(shí),計(jì)數(shù)使能信號(hào)(cp)立即變成高電平,鎖存信號(hào)(creg)及清零信號(hào)(clr)變成低電平,同步 信號(hào)(clk)的上升沿再次到來時(shí),除清零信號(hào)(clr)外,其余信號(hào)均取反,當(dāng)同步信號(hào)(clk)的下降沿到來時(shí),清零信號(hào)(clr)變成高電平。當(dāng)同 步信號(hào)又到來時(shí),重復(fù)上述過程,其仿真結(jié)果如圖9所示。
3.2.5 頂層設(shè)計(jì)
由 模塊電路設(shè)計(jì)原理圖4,經(jīng)過VHDL編程,得到各模塊的VHDL設(shè)計(jì)實(shí)體,然后對(duì)各模塊的設(shè)計(jì)實(shí)體在Max+PlusⅡ中進(jìn)行仿真,驗(yàn)證各模塊的正確性。 最后再設(shè)計(jì)一個(gè)頂層文件把各模塊按圖4連接起來,便構(gòu)成了一個(gè)全同步數(shù)字頻率計(jì)的FPGA內(nèi)部硬件電路。下面給出頂層文件的仿真結(jié)果,由仿真圖10可看 出:124×108/93=13 333 333,由于使用的是10 MHz的晶振,因此還有一位小數(shù)點(diǎn)最終顯示的結(jié)果應(yīng)該是1 333 333.3Hz。由仿真圖11知,小數(shù)位在數(shù)碼管的第二位上有效,其余位均無效。仿真結(jié)果與期望結(jié)果一致。至此,本設(shè)計(jì)得到成功驗(yàn)證。
4 結(jié) 語
本 文利用Altear公司的FPGA芯片F(xiàn)lexEPF10k20TC144-4 [5],使用VHDL語言設(shè)計(jì)了全同步數(shù)字頻率計(jì),在Max+PlusⅡ中進(jìn)行了各模塊的仿真,達(dá)到了預(yù)期結(jié)果。全同步數(shù)字頻率計(jì)是目前精度最高的頻率計(jì) 之一。在高速時(shí)鐘隨處可見的現(xiàn)代電子系統(tǒng),有著非常廣泛的研究?jī)r(jià)值。從某種程度上說他是以犧牲時(shí)間來換取精確度的,但一般情況下測(cè)頻系統(tǒng)對(duì)時(shí)間的要求并不 高,并且由于電子系統(tǒng)對(duì)系統(tǒng)時(shí)鐘的準(zhǔn)確度越來越高,因此全同步數(shù)字頻率計(jì)有著廣泛的應(yīng)用空間。本文引用地址:http://cafeforensic.com/article/185975.htm
評(píng)論