色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 消費(fèi)電子 > 設(shè)計(jì)應(yīng)用 > 標(biāo)簽傳播算法(Label Propagation)及Python實(shí)現(xiàn)

          標(biāo)簽傳播算法(Label Propagation)及Python實(shí)現(xiàn)

          作者: 時間:2018-07-24 來源:網(wǎng)絡(luò) 收藏

          眾所周知,機(jī)器學(xué)習(xí)可以大體分為三大類:監(jiān)督學(xué)習(xí)、非監(jiān)督學(xué)習(xí)和半監(jiān)督學(xué)習(xí)。監(jiān)督學(xué)習(xí)可以認(rèn)為是我們有非常多的labeled標(biāo)注數(shù)據(jù)來train一個模型,期待這個模型能學(xué)習(xí)到數(shù)據(jù)的分布,以期對未來沒有見到的樣本做預(yù)測。那這個性能的源頭--訓(xùn)練數(shù)據(jù),就顯得非常感覺。你必須有足夠的訓(xùn)練數(shù)據(jù),以覆蓋真正現(xiàn)實(shí)數(shù)據(jù)中的樣本分布才可以,這樣學(xué)習(xí)到的模型才有意義。那非監(jiān)督學(xué)習(xí)就是沒有任何的labeled數(shù)據(jù),就是平時所說的聚類了,利用他們本身的數(shù)據(jù)分布,給他們劃分類別。而半監(jiān)督學(xué)習(xí),顧名思義就是處于兩者之間的,只有少量的labeled數(shù)據(jù),我們試圖從這少量的labeled數(shù)據(jù)和大量的unlabeled數(shù)據(jù)中學(xué)習(xí)到有用的信息。

          本文引用地址:http://cafeforensic.com/article/201807/383624.htm

          一、半監(jiān)督學(xué)習(xí)

          半監(jiān)督學(xué)習(xí)(Semi-supervised learning)發(fā)揮作用的場合是:你的數(shù)據(jù)有一些有l(wèi)abel,一些沒有。而且一般是絕大部分都沒有,只有少許幾個有l(wèi)abel。半監(jiān)督學(xué)習(xí)算法會充分的利用unlabeled數(shù)據(jù)來捕捉我們整個數(shù)據(jù)的潛在分布。它基于三大假設(shè):

          1)Smoothness平滑假設(shè):相似的數(shù)據(jù)具有相同的label。

          2)Cluster聚類假設(shè):處于同一個聚類下的數(shù)據(jù)具有相同label。

          3)Manifold流形假設(shè):處于同一流形結(jié)構(gòu)下的數(shù)據(jù)具有相同label。

          例如下圖,只有兩個labeled數(shù)據(jù),如果直接用他們來訓(xùn)練一個分類器,例如LR或者SVM,那么學(xué)出來的分類面就是左圖那樣的。如果現(xiàn)實(shí)中,這個數(shù)據(jù)是右圖那邊分布的話,豬都看得出來,左圖訓(xùn)練的這個分類器爛的一塌糊涂、慘不忍睹。因?yàn)槲覀兊膌abeled訓(xùn)練數(shù)據(jù)太少了,都沒辦法覆蓋我們未來可能遇到的情況。但是,如果右圖那樣,把大量的unlabeled數(shù)據(jù)(黑色的)都考慮進(jìn)來,有個全局觀念,牛逼的算法會發(fā)現(xiàn),哎喲,原來是兩個圈圈(分別處于兩個圓形的流形之上)!那算法就很聰明,把大圈的數(shù)據(jù)都?xì)w類為紅色類別,把內(nèi)圈的數(shù)據(jù)都?xì)w類為藍(lán)色類別。因?yàn)?,?shí)踐中,labeled數(shù)據(jù)是昂貴,很難獲得的,但unlabeled數(shù)據(jù)就不是了,寫個腳本在網(wǎng)上爬就可以了,因此如果能充分利用大量的unlabeled數(shù)據(jù)來輔助提升我們的模型學(xué)習(xí),這個價值就非常大。

          半監(jiān)督學(xué)習(xí)算法有很多,下面我們介紹最簡單的標(biāo)簽傳播算法(label propagation),最喜歡簡單了,哈哈。

          二、標(biāo)簽傳播算法

          標(biāo)簽傳播算法(label propagation)的核心思想非常簡單:相似的數(shù)據(jù)應(yīng)該具有相同的label。LP算法包括兩大步驟:1)構(gòu)造相似矩陣;2)勇敢的傳播吧。

          2.1、相似矩陣構(gòu)建

          LP算法是基于Graph的,因此我們需要先構(gòu)建一個圖。我們?yōu)樗械臄?shù)據(jù)構(gòu)建一個圖,圖的節(jié)點(diǎn)就是一個數(shù)據(jù)點(diǎn),包含labeled和unlabeled的數(shù)據(jù)。節(jié)點(diǎn)i和節(jié)點(diǎn)j的邊表示他們的相似度。這個圖的構(gòu)建方法有很多,這里我們假設(shè)這個圖是全連接的,節(jié)點(diǎn)i和節(jié)點(diǎn)j的邊權(quán)重為:

          這里,α是超參。

          還有個非常常用的圖構(gòu)建方法是knn圖,也就是只保留每個節(jié)點(diǎn)的k近鄰權(quán)重,其他的為0,也就是不存在邊,因此是稀疏的相似矩陣。

          2.2、LP算法

          標(biāo)簽傳播算法非常簡單:通過節(jié)點(diǎn)之間的邊傳播label。邊的權(quán)重越大,表示兩個節(jié)點(diǎn)越相似,那么label越容易傳播過去。我們定義一個NxN的概率轉(zhuǎn)移矩陣P:

          Pij表示從節(jié)點(diǎn)i轉(zhuǎn)移到節(jié)點(diǎn)j的概率。假設(shè)有C個類和L個labeled樣本,我們定義一個LxC的label矩陣YL,第i行表示第i個樣本的標(biāo)簽指示向量,即如果第i個樣本的類別是j,那么該行的第j個元素為1,其他為0。同樣,我們也給U個unlabeled樣本一個UxC的label矩陣YU。把他們合并,我們得到一個NxC的soft label矩陣F=[YL;YU]。soft label的意思是,我們保留樣本i屬于每個類別的概率,而不是互斥性的,這個樣本以概率1只屬于一個類。當(dāng)然了,最后確定這個樣本i的類別的時候,是取max也就是概率最大的那個類作為它的類別的。那F里面有個YU,它一開始是不知道的,那最開始的值是多少?無所謂,隨便設(shè)置一個值就可以了。

          千呼萬喚始出來,簡單的LP算法如下:

          1)執(zhí)行傳播:F=PF

          2)重置F中l(wèi)abeled樣本的標(biāo)簽:FL=YL

          3)重復(fù)步驟1)和2)直到F收斂。

          步驟1)就是將矩陣P和矩陣F相乘,這一步,每個節(jié)點(diǎn)都將自己的label以P確定的概率傳播給其他節(jié)點(diǎn)。如果兩個節(jié)點(diǎn)越相似(在歐式空間中距離越近),那么對方的label就越容易被自己的label賦予,就是更容易拉幫結(jié)派。步驟2)非常關(guān)鍵,因?yàn)閘abeled數(shù)據(jù)的label是事先確定的,它不能被帶跑,所以每次傳播完,它都得回歸它本來的label。隨著labeled數(shù)據(jù)不斷的將自己的label傳播出去,最后的類邊界會穿越高密度區(qū)域,而停留在低密度的間隔中。相當(dāng)于每個不同類別的labeled樣本劃分了勢力范圍。

          2.3、變身的LP算法

          我們知道,我們每次迭代都是計(jì)算一個soft label矩陣F=[YL;YU],但是YL是已知的,計(jì)算它沒有什么用,在步驟2)的時候,還得把它弄回來。我們關(guān)心的只是YU,那我們能不能只計(jì)算YU呢?Yes。我們將矩陣P做以下劃分:

          這時候,我們的算法就一個運(yùn)算:

          迭代上面這個步驟直到收斂就ok了,是不是很cool??梢钥吹紽U不但取決于labeled數(shù)據(jù)的標(biāo)簽及其轉(zhuǎn)移概率,還取決了unlabeled數(shù)據(jù)的當(dāng)前l(fā)abel和轉(zhuǎn)移概率。因此LP算法能額外運(yùn)用unlabeled數(shù)據(jù)的分布特點(diǎn)。

          這個算法的收斂性也非常容易證明,具體見參考文獻(xiàn)[1]。實(shí)際上,它是可以收斂到一個凸解的:

          所以我們也可以直接這樣求解,以獲得最終的YU。但是在實(shí)際的應(yīng)用過程中,由于矩陣求逆需要O(n3)的復(fù)雜度,所以如果unlabeled數(shù)據(jù)非常多,那么I – PUU矩陣的求逆將會非常耗時,因此這時候一般選擇迭代算法來實(shí)現(xiàn)。

          三、LP算法的Python實(shí)現(xiàn)

          Python環(huán)境的搭建就不嗦了,可以參考前面的博客。需要額外依賴的庫是經(jīng)典的numpy和matplotlib。代碼中包含了兩種圖的構(gòu)建方法:RBF和KNN指定。同時,自己生成了兩個toy數(shù)據(jù)庫:兩條長形形狀和兩個圈圈的數(shù)據(jù)。第四部分我們用大點(diǎn)的數(shù)據(jù)庫來做實(shí)驗(yàn),先簡單的可視化驗(yàn)證代碼的正確性,再前線。

          算法代碼:

          #***************************************************************************

          #*

          #* Description: label propagation

          #* Author: Zou Xiaoyi (zouxy09@qq.com)

          #* Date: 2015-10-15

          #* HomePage: http://blog.csdn.net/zouxy09

          #*

          #**************************************************************************

          import time

          import numpy as np

          # return k neighbors index

          def navie_knn(dataSet, query, k):

          numSamples = dataSet.shape[0]

          ## step 1: calculate Euclidean distance

          diff = np.tile(query, (numSamples, 1)) - dataSet

          squaredDiff = diff ** 2

          squaredDist = np.sum(squaredDiff, axis = 1) # sum is performed by row

          ## step 2: sort the distance

          sortedDistIndices = np.argsort(squaredDist)

          if k > len(sortedDistIndices):

          k = len(sortedDistIndices)

          return sortedDistIndices[0:k]

          # build a big graph (normalized weight matrix)

          def buildGraph(MatX, kernel_type, rbf_sigma = None, knn_num_neighbors = None):

          num_samples = MatX.shape[0]

          affinity_matrix = np.zeros((num_samples, num_samples), np.float32)

          if kernel_type == 'rbf':

          if rbf_sigma == None:

          raise ValueError('You should input a sigma of rbf kernel!')

          for i in xrange(num_samples):

          row_sum = 0.0

          for j in xrange(num_samples):

          diff = MatX[i, :] - MatX[j, :]

          affinity_matrix[i][j] = np.exp(sum(diff**2) / (-2.0 * rbf_sigma**2))

          row_sum += affinity_matrix[i][j]

          affinity_matrix[i][:] /= row_sum

          elif kernel_type == 'knn':

          if knn_num_neighbors == None:

          raise ValueError('You should input a k of knn kernel!')

          for i in xrange(num_samples):

          k_neighbors = navie_knn(MatX, MatX[i, :], knn_num_neighbors)

          affinity_matrix[i][k_neighbors] = 1.0 / knn_num_neighbors

          else:

          raise NameError('Not support kernel type! You can use knn or rbf!')

          return affinity_matrix

          # label propagation

          def labelPropagation(Mat_Label, Mat_Unlabel, labels, kernel_type = 'rbf', rbf_sigma = 1.5,

          knn_num_neighbors = 10, max_iter = 500, tol = 1e-3):

          # initialize

          num_label_samples = Mat_Label.shape[0]

          num_unlabel_samples = Mat_Unlabel.shape[0]

          num_samples = num_label_samples + num_unlabel_samples

          labels_list = np.unique(labels)

          num_classes = len(labels_list)

          MatX = np.vstack((Mat_Label, Mat_Unlabel))

          clamp_data_label = np.zeros((num_label_samples, num_classes), np.float32)

          for i in xrange(num_label_samples):

          clamp_data_label[i][labels[i]] = 1.0

          label_function = np.zeros((num_samples, num_classes), np.float32)

          label_function[0 : num_label_samples] = clamp_data_label

          label_function[num_label_samples : num_samples] = -1

          # graph construction

          affinity_matrix = buildGraph(MatX, kernel_type, rbf_sigma, knn_num_neighbors)

          # start to propagation

          iter = 0; pre_label_function = np.zeros((num_samples, num_classes), np.float32)

          changed = np.abs(pre_label_function - label_function).sum()

          while iter max_iter and changed > tol:

          if iter % 1 == 0:

          print ---> Iteration %d/%d, changed: %f % (iter, max_iter, changed)

          pre_label_function = label_function

          iter += 1

          # propagation

          label_function = np.dot(affinity_matrix, label_function)

          # clamp

          label_function[0 : num_label_samples] = clamp_data_label

          # check converge

          changed = np.abs(pre_label_function - label_function).sum()

          # get terminate label of unlabeled data

          unlabel_data_labels = np.zeros(num_unlabel_samples)

          for i in xrange(num_unlabel_samples):

          unlabel_data_labels[i] = np.argmax(label_function[i+num_label_samples])

          return unlabel_data_labels

          測試代碼:

          #***************************************************************************

          #*

          #* Description: label propagation

          #* Author: Zou Xiaoyi (zouxy09@qq.com)

          #* Date: 2015-10-15

          #* HomePage: http://blog.csdn.net/zouxy09

          #*

          #**************************************************************************

          import time

          import math

          import numpy as np

          from label_propagation import labelPropagation

          # show

          def show(Mat_Label, labels, Mat_Unlabel, unlabel_data_labels):

          import matplotlib.pyplot as plt

          for i in range(Mat_Label.shape[0]):

          if int(labels[i]) == 0:

          plt.plot(Mat_Label[i, 0], Mat_Label[i, 1], 'Dr')

          elif int(labels[i]) == 1:

          plt.plot(Mat_Label[i, 0], Mat_Label[i, 1], 'Db')

          else:

          plt.plot(Mat_Label[i, 0], Mat_Label[i, 1], 'Dy')

          for i in range(Mat_Unlabel.shape[0]):

          if int(unlabel_data_labels[i]) == 0:

          plt.plot(Mat_Unlabel[i, 0], Mat_Unlabel[i, 1], 'or')

          elif int(unlabel_data_labels[i]) == 1:

          plt.plot(Mat_Unlabel[i, 0], Mat_Unlabel[i, 1], 'ob')

          else:

          plt.plot(Mat_Unlabel[i, 0], Mat_Unlabel[i, 1], 'oy')

          plt.xlabel('X1'); plt.ylabel('X2')

          plt.xlim(0.0, 12.)

          plt.ylim(0.0, 12.)

          plt.show()

          def loadCircleData(num_data):

          center = np.array([5.0, 5.0])

          radiu_inner = 2

          radiu_outer = 4

          num_inner = num_data / 3

          num_outer = num_data - num_inner

          data = []

          theta = 0.0

          for i in range(num_inner):

          pho = (theta % 360) * math.pi / 180

          tmp = np.zeros(2, np.float32)

          tmp[0] = radiu_inner * math.cos(pho) + np.random.rand(1) + center[0]

          tmp[1] = radiu_inner * math.sin(pho) + np.random.rand(1) + center[1]

          data.append(tmp)

          theta += 2

          theta = 0.0

          for i in range(num_outer):

          pho = (theta % 360) * math.pi / 180

          tmp = np.zeros(2, np.float32)

          tmp[0] = radiu_outer * math.cos(pho) + np.random.rand(1) + center[0]

          tmp[1] = radiu_outer * math.sin(pho) + np.random.rand(1) + center[1]

          data.append(tmp)

          theta += 1

          Mat_Label = np.zeros((2, 2), np.float32)

          Mat_Label[0] = center + np.array([-radiu_inner + 0.5, 0])

          Mat_Label[1] = center + np.array([-radiu_outer + 0.5, 0])

          labels = [0, 1]

          Mat_Unlabel = np.vstack(data)

          return Mat_Label, labels, Mat_Unlabel

          def loadBandData(num_unlabel_samples):

          #Mat_Label = np.array([[5.0, 2.], [5.0, 8.0]])

          #labels = [0, 1]

          #Mat_Unlabel = np.array([[5.1, 2.], [5.0, 8.1]])

          Mat_Label = np.array([[5.0, 2.], [5.0, 8.0]])

          labels = [0, 1]

          num_dim = Mat_Label.shape[1]

          Mat_Unlabel = np.zeros((num_unlabel_samples, num_dim), np.float32)

          Mat_Unlabel[:num_unlabel_samples/2, :] = (np.random.rand(num_unlabel_samples/2, num_dim) - 0.5) * np.array([3, 1]) + Mat_Label[0]

          Mat_Unlabel[num_unlabel_samples/2 : num_unlabel_samples, :] = (np.random.rand(num_unlabel_samples/2, num_dim) - 0.5) * np.array([3, 1]) + Mat_Label[1]

          return Mat_Label, labels, Mat_Unlabel

          # main function

          if __name__ == __main__:

          num_unlabel_samples = 800

          #Mat_Label, labels, Mat_Unlabel = loadBandData(num_unlabel_samples)

          Mat_Label, labels, Mat_Unlabel = loadCircleData(num_unlabel_samples)

          ## Notice: when use 'rbf' as our kernel, the choice of hyper parameter 'sigma' is very import! It should be

          ## chose according to your dataset, specific the distance of two data points. I think it should ensure that

          ## each point has about 10 knn or w_i,j is large enough. It also influence the speed of converge. So, may be

          ## 'knn' kernel is better!

          #unlabel_data_labels = labelPropagation(Mat_Label, Mat_Unlabel, labels, kernel_type = 'rbf', rbf_sigma = 0.2)

          unlabel_data_labels = labelPropagation(Mat_Label, Mat_Unlabel, labels, kernel_type = 'knn', knn_num_neighbors = 10, max_iter = 400)

          show(Mat_Label, labels, Mat_Unlabel, unlabel_data_labels)

          該注釋的,代碼都注釋的,有看不明白的,歡迎交流。不同迭代次數(shù)時候的結(jié)果如下:

          是不是很漂亮的傳播過程?!在數(shù)值上也是可以看到隨著迭代的進(jìn)行逐漸收斂的,迭代的數(shù)值變化過程如下:

          ---> Iteration 0/400, changed: 1602.000000

          ---> Iteration 1/400, changed: 6.300182

          ---> Iteration 2/400, changed: 5.129996

          ---> Iteration 3/400, changed: 4.301994

          ---> Iteration 4/400, changed: 3.819295

          ---> Iteration 5/400, changed: 3.501743

          ---> Iteration 6/400, changed: 3.277122

          ---> Iteration 7/400, changed: 3.105952

          ---> Iteration 8/400, changed: 2.967030

          ---> Iteration 9/400, changed: 2.848606

          ---> Iteration 10/400, changed: 2.743997

          ---> Iteration 11/400, changed: 2.649270

          ---> Iteration 12/400, changed: 2.562057

          ---> Iteration 13/400, changed: 2.480885

          ---> Iteration 14/400, changed: 2.404774

          ---> Iteration 15/400, changed: 2.333075

          ---> Iteration 16/400, changed: 2.265301

          ---> Iteration 17/400, changed: 2.201107

          ---> Iteration 18/400, changed: 2.140209

          ---> Iteration 19/400, changed: 2.082354

          ---> Iteration 20/400, changed: 2.027376

          ---> Iteration 21/400, changed: 1.975071

          ---> Iteration 22/400, changed: 1.925286

          ---> Iteration 23/400, changed: 1.877894

          ---> Iteration 24/400, changed: 1.832743

          ---> Iteration 25/400, changed: 1.789721

          ---> Iteration 26/400, changed: 1.748706

          ---> Iteration 27/400, changed: 1.709593

          ---> Iteration 28/400, changed: 1.672284

          ---> Iteration 29/400, changed: 1.636668

          ---> Iteration 30/400, changed: 1.602668

          ---> Iteration 31/400, changed: 1.570200

          ---> Iteration 32/400, changed: 1.539179

          ---> Iteration 33/400, changed: 1.509530

          ---> Iteration 34/400, changed: 1.481182

          ---> Iteration 35/400, changed: 1.454066

          ---> Iteration 36/400, changed: 1.428120

          ---> Iteration 37/400, changed: 1.403283

          ---> Iteration 38/400, changed: 1.379502

          ---> Iteration 39/400, changed: 1.356734

          ---> Iteration 40/400, changed: 1.334906

          ---> Iteration 41/400, changed: 1.313983

          ---> Iteration 42/400, changed: 1.293921

          ---> Iteration 43/400, changed: 1.274681

          ---> Iteration 44/400, changed: 1.256214

          ---> Iteration 45/400, changed: 1.238491

          ---> Iteration 46/400, changed: 1.221474

          ---> Iteration 47/400, changed: 1.205126

          ---> Iteration 48/400, changed: 1.189417

          ---> Iteration 49/400, changed: 1.174316

          ---> Iteration 50/400, changed: 1.159804

          ---> Iteration 51/400, changed: 1.145844

          ---> Iteration 52/400, changed: 1.132414

          ---> Iteration 53/400, changed: 1.119490

          ---> Iteration 54/400, changed: 1.107032

          ---> Iteration 55/400, changed: 1.095054

          ---> Iteration 56/400, changed: 1.083513

          ---> Iteration 57/400, changed: 1.072397

          ---> Iteration 58/400, changed: 1.061671

          ---> Iteration 59/400, changed: 1.051324

          ---> Iteration 60/400, changed: 1.041363

          ---> Iteration 61/400, changed: 1.031742

          ---> Iteration 62/400, changed: 1.022459

          ---> Iteration 63/400, changed: 1.013494

          ---> Iteration 64/400, changed: 1.004836

          ---> Iteration 65/400, changed: 0.996484

          ---> Iteration 66/400, changed: 0.988407

          ---> Iteration 67/400, changed: 0.980592

          ---> Iteration 68/400, changed: 0.973045

          ---> Iteration 69/400, changed: 0.965744

          ---> Iteration 70/400, changed: 0.958682

          ---> Iteration 71/400, changed: 0.951848

          ---> Iteration 72/400, changed: 0.945227

          ---> Iteration 73/400, changed: 0.938820

          ---> Iteration 74/400, changed: 0.932608

          ---> Iteration 75/400, changed: 0.926590

          ---> Iteration 76/400, changed: 0.920765

          ---> Iteration 77/400, changed: 0.915107

          ---> Iteration 78/400, changed: 0.909628

          ---> Iteration 79/400, changed: 0.904309

          ---> Iteration 80/400, changed: 0.899143

          ---> Iteration 81/400, changed: 0.894122

          ---> Iteration 82/400, changed: 0.889259

          ---> Iteration 83/400, changed: 0.884530

          ---> Iteration 84/400, changed: 0.879933

          ---> Iteration 85/400, changed: 0.875464

          ---> Iteration 86/400, changed: 0.871121

          ---> Iteration 87/400, changed: 0.866888

          ---> Iteration 88/400, changed: 0.862773

          ---> Iteration 89/400, changed: 0.858783

          ---> Iteration 90/400, changed: 0.854879

          ---> Iteration 91/400, changed: 0.851084

          ---> Iteration 92/400, changed: 0.847382

          ---> Iteration 93/400, changed: 0.843779

          ---> Iteration 94/400, changed: 0.840274

          ---> Iteration 95/400, changed: 0.836842

          ---> Iteration 96/400, changed: 0.833501

          ---> Iteration 97/400, changed: 0.830240

          ---> Iteration 98/400, changed: 0.827051

          ---> Iteration 99/400, changed: 0.823950

          ---> Iteration 100/400, changed: 0.820906

          ---> Iteration 101/400, changed: 0.817946

          ---> Iteration 102/400, changed: 0.815053

          ---> Iteration 103/400, changed: 0.812217

          ---> Iteration 104/400, changed: 0.809437

          ---> Iteration 105/400, changed: 0.806724

          ---> Iteration 106/400, changed: 0.804076

          ---> Iteration 107/400, changed: 0.801480

          ---> Iteration 108/400, changed: 0.798937

          ---> Iteration 109/400, changed: 0.796448

          ---> Iteration 110/400, changed: 0.794008

          ---> Iteration 111/400, changed: 0.791612

          ---> Iteration 112/400, changed: 0.789282

          ---> Iteration 113/400, changed: 0.786984

          ---> Iteration 114/400, changed: 0.784728

          ---> Iteration 115/400, changed: 0.782516

          ---> Iteration 116/400, changed: 0.780355

          ---> Iteration 117/400, changed: 0.778216

          ---> Iteration 118/400, changed: 0.776139

          ---> Iteration 119/400, changed: 0.774087

          ---> Iteration 120/400, changed: 0.772072

          ---> Iteration 121/400, changed: 0.770085

          ---> Iteration 122/400, changed: 0.768146

          ---> Iteration 123/400, changed: 0.766232

          ---> Iteration 124/400, changed: 0.764356

          ---> Iteration 125/400, changed: 0.762504

          ---> Iteration 126/400, changed: 0.760685

          ---> Iteration 127/400, changed: 0.758889

          ---> Iteration 128/400, changed: 0.757135

          ---> Iteration 129/400, changed: 0.755406

          四、LP算法MPI并行實(shí)現(xiàn)

          這里,我們測試的是LP的變身版本。從公式,我們可以看到,第二項(xiàng)PULYL迭代過程并沒有發(fā)生變化,所以這部分實(shí)際上從迭代開始就可以計(jì)算好,從而避免重復(fù)計(jì)算。不過,不管怎樣,LP算法都要計(jì)算一個UxU的矩陣PUU和一個UxC矩陣FU的乘積。當(dāng)我們的unlabeled數(shù)據(jù)非常多,而且類別也很多的時候,計(jì)算是很慢的,同時占用的內(nèi)存量也非常大。另外,構(gòu)造Graph需要計(jì)算兩兩的相似度,也是O(n2)的復(fù)雜度,當(dāng)我們數(shù)據(jù)的特征維度很大的時候,這個計(jì)算量也是非??陀^的。所以我們就得考慮并行處理了。而且最好是能放到集群上并行。那如何并行呢?

          對算法的并行化,一般分為兩種:數(shù)據(jù)并行和模型并行。

          數(shù)據(jù)并行很好理解,就是將數(shù)據(jù)劃分,每個節(jié)點(diǎn)只處理一部分?jǐn)?shù)據(jù),例如我們構(gòu)造圖的時候,計(jì)算每個數(shù)據(jù)的k近鄰。例如我們有1000個樣本和20個CPU節(jié)點(diǎn),那么就平均分發(fā),讓每個CPU節(jié)點(diǎn)計(jì)算50個樣本的k近鄰,然后最后再合并大家的結(jié)果??梢娺@個加速比也是非??捎^的。

          模型并行一般發(fā)生在模型很大,無法放到單機(jī)的內(nèi)存里面的時候。例如龐大的深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練的時候,就需要把這個網(wǎng)絡(luò)切開,然后分別求解梯度,最后有個leader的節(jié)點(diǎn)來收集大家的梯度,再反饋給大家去更新。當(dāng)然了,其中存在更細(xì)致和高效的工程處理方法。在我們的LP算法中,也是可以做模型并行的。假如我們的類別數(shù)C很大,把類別數(shù)切開,讓不同的CPU節(jié)點(diǎn)處理,實(shí)際上就相當(dāng)于模型并行了。

          那為啥不切大矩陣PUU,而是切小點(diǎn)的矩陣FU,因?yàn)榇缶仃嘝UU沒法獨(dú)立分塊,并行的一個原則是處理必須是獨(dú)立的。 矩陣FU依賴的是所有的U,而把PUU切開分發(fā)到其他節(jié)點(diǎn)的時候,每次FU的更新都需要和其他的節(jié)點(diǎn)通信,這個通信的代價是很大的(實(shí)際上,很多并行系統(tǒng)沒法達(dá)到線性的加速度的瓶頸是通信!線性加速比是,我增加了n臺機(jī)器,速度就提升了n倍)。但是對類別C也就是矩陣FU切分,就不會有這個問題,因?yàn)樗麄兊挠?jì)算是獨(dú)立的。只是決定樣本的最終類別的時候,將所有的FU收集回來求max就可以了。

          所以,在下面的代碼中,是同時包含了數(shù)據(jù)并行和模型并行的雛形的。另外,還值得一提的是,我們是迭代算法,那決定什么時候迭代算法停止?除了判斷收斂外,我們還可以讓每迭代幾步,就用測試label測試一次結(jié)果,看模型的整體訓(xùn)練性能如何。特別是判斷訓(xùn)練是否過擬合的時候非常有效。因此,代碼中包含了這部分內(nèi)容。

          好了,代碼終于來了。大家可以搞點(diǎn)大數(shù)據(jù)庫來測試,如果有MPI集群條件的話就更好了。

          下面的代碼依賴numpy、scipy(用其稀疏矩陣加速計(jì)算)和mpi4py。其中mpi4py需要依賴openmpi和Cpython,可以參考我之前的博客進(jìn)行安裝。

          #***************************************************************************

          #*

          #* Description: label propagation

          #* Author: Zou Xiaoyi (zouxy09@qq.com)

          #* Date: 2015-10-15

          #* HomePage: http://blog.csdn.net/zouxy09

          #*

          #**************************************************************************

          import os, sys, time

          import numpy as np

          from scipy.sparse import csr_matrix, lil_matrix, eye

          import operator

          import cPickle as pickle

          import mpi4py.MPI as MPI

          #

          # Global variables for MPI

          #

          # instance for invoking MPI related functions

          comm = MPI.COMM_WORLD

          # the node rank in the whole community

          comm_rank = comm.Get_rank()

          # the size of the whole community, i.e., the total number of working nodes in the MPI cluster

          comm_size = comm.Get_size()

          # load mnist dataset

          def load_MNIST():

          import gzip

          f = gzip.open(mnist.pkl.gz, rb)

          train, val, test = pickle.load(f)

          f.close()

          Mat_Label = train[0]

          labels = train[1]

          Mat_Unlabel = test[0]

          groundtruth = test[1]

          labels_id = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

          return Mat_Label, labels, labels_id, Mat_Unlabel, groundtruth

          # return k neighbors index

          def navie_knn(dataSet, query, k):

          numSamples = dataSet.shape[0]

          ## step 1: calculate Euclidean distance

          diff = np.tile(query, (numSamples, 1)) - dataSet

          squaredDiff = diff ** 2

          squaredDist = np.sum(squaredDiff, axis = 1) # sum is performed by row

          ## step 2: sort the distance

          sortedDistIndices = np.argsort(squaredDist)

          if k > len(sortedDistIndices):

          k = len(sortedDistIndices)

          return sortedDistIndices[0:k]

          # build a big graph (normalized weight matrix)

          # sparse U x (U + L) matrix

          def buildSubGraph(Mat_Label, Mat_Unlabel, knn_num_neighbors):

          num_unlabel_samples = Mat_Unlabel.shape[0]

          data = []; indices = []; indptr = [0]

          Mat_all = np.vstack((Mat_Label, Mat_Unlabel))

          values = np.ones(knn_num_neighbors, np.float32) / knn_num_neighbors

          for i in xrange(num_unlabel_samples):

          k_neighbors = navie_knn(Mat_all, Mat_Unlabel[i, :], knn_num_neighbors)

          indptr.append(np.int32(indptr[-1]) + knn_num_neighbors)

          indices.extend(k_neighbors)

          data.append(values)

          return csr_matrix((np.hstack(data), indices, indptr))

          # build a big graph (normalized weight matrix)

          # sparse U x (U + L) matrix

          def buildSubGraph_MPI(Mat_Label, Mat_Unlabel, knn_num_neighbors):

          num_unlabel_samples = Mat_Unlabel.shape[0]

          local_data = []; local_indices = []; local_indptr = [0]

          Mat_all = np.vstack((Mat_Label, Mat_Unlabel))

          values = np.ones(knn_num_neighbors, np.float32) / knn_num_neighbors

          sample_offset = np.linspace(0, num_unlabel_samples, comm_size + 1).astype('int')

          for i in range(sample_offset[comm_rank], sample_offset[comm_rank+1]):

          k_neighbors = navie_knn(Mat_all, Mat_Unlabel[i, :], knn_num_neighbors)

          local_indptr.append(np.int32(local_indptr[-1]) + knn_num_neighbors)

          local_indices.extend(k_neighbors)

          local_data.append(values)

          data = np.hstack(comm.allgather(local_data))

          indices = np.hstack(comm.allgather(local_indices))

          indptr_tmp = comm.allgather(local_indptr)

          indptr = []

          for i in range(len(indptr_tmp)):

          if i == 0:

          indptr.extend(indptr_tmp[i])

          else:

          last_indptr = indptr[-1]

          del(indptr[-1])

          indptr.extend(indptr_tmp[i] + last_indptr)

          return csr_matrix((np.hstack(data), indices, indptr), dtype = np.float32)

          # label propagation

          def run_label_propagation_sparse(knn_num_neighbors = 20, max_iter = 100, tol = 1e-4, test_per_iter = 1):

          # load data and graph

          print Processor %d/%d loading graph file... % (comm_rank, comm_size)

          #Mat_Label, labels, Mat_Unlabel, groundtruth = loadFourBandData()

          Mat_Label, labels, labels_id, Mat_Unlabel, unlabel_data_id = load_MNIST()

          if comm_size > len(labels_id):

          raise ValueError(Sorry, the processors must be less than the number of classes)

          #affinity_matrix = buildSubGraph(Mat_Label, Mat_Unlabel, knn_num_neighbors)

          affinity_matrix = buildSubGraph_MPI(Mat_Label, Mat_Unlabel, knn_num_neighbors)

          # get some parameters

          num_classes = len(labels_id)

          num_label_samples = len(labels)

          num_unlabel_samples = Mat_Unlabel.shape[0]

          affinity_matrix_UL = affinity_matrix[:, 0:num_label_samples]

          affinity_matrix_UU = affinity_matrix[:, num_label_samples:num_label_samples+num_unlabel_samples]

          if comm_rank == 0:

          print Have %d labeled images, %d unlabeled images and %d classes % (num_label_samples, num_unlabel_samples, num_classes)

          # divide label_function_U and label_function_L to all processors

          class_offset = np.linspace(0, num_classes, comm_size + 1).astype('int')

          # initialize local label_function_U

          local_start_class = class_offset[comm_rank]

          local_num_classes = class_offset[comm_rank+1] - local_start_class

          local_label_function_U = eye(num_unlabel_samples, local_num_classes, 0, np.float32, format='csr')

          # initialize local label_function_L

          local_label_function_L = lil_matrix((num_label_samples, local_num_classes), dtype = np.float32)

          for i in xrange(num_label_samples):

          class_off = int(labels[i]) - local_start_class

          if class_off >= 0 and class_off local_num_classes:

          local_label_function_L[i, class_off] = 1.0

          local_label_function_L = local_label_function_L.tocsr()

          local_label_info = affinity_matrix_UL.dot(local_label_function_L)

          print Processor %d/%d has to process %d classes... % (comm_rank, comm_size, local_label_function_L.shape[1])

          # start to propagation

          iter = 1; changed = 100.0;

          evaluation(num_unlabel_samples, local_start_class, local_label_function_U, unlabel_data_id, labels_id)

          while True:

          pre_label_function = local_label_function_U.copy()

          # propagation

          local_label_function_U = affinity_matrix_UU.dot(local_label_function_U) + local_label_info

          # check converge

          local_changed = abs(pre_label_function - local_label_function_U).sum()

          changed = comm.reduce(local_changed, root = 0, op = MPI.SUM)

          status = 'RUN'

          test = False

          if comm_rank == 0:

          if iter % 1 == 0:

          norm_changed = changed / (num_unlabel_samples * num_classes)

          print ---> Iteration %d/%d, changed: %f % (iter, max_iter, norm_changed)

          if iter >= max_iter or changed tol:

          status = 'STOP'

          print ************** Iteration over! ****************

          if iter % test_per_iter == 0:

          test = True

          iter += 1

          test = comm.bcast(test if comm_rank == 0 else None, root = 0)

          status = comm.bcast(status if comm_rank == 0 else None, root = 0)

          if status == 'STOP':

          break

          if test == True:

          evaluation(num_unlabel_samples, local_start_class, local_label_function_U, unlabel_data_id, labels_id)

          evaluation(num_unlabel_samples, local_start_class, local_label_function_U, unlabel_data_id, labels_id)

          def evaluation(num_unlabel_samples, local_start_class, local_label_function_U, unlabel_data_id, labels_id):

          # get local label with max score

          if comm_rank == 0:

          print Start to combine local result...

          local_max_score = np.zeros((num_unlabel_samples, 1), np.float32)

          local_max_label = np.zeros((num_unlabel_samples, 1), np.int32)

          for i in xrange(num_unlabel_samples):

          local_max_label[i, 0] = np.argmax(local_label_function_U.getrow(i).todense())

          local_max_score[i, 0] = local_label_function_U[i, local_max_label[i, 0]]

          local_max_label[i, 0] += local_start_class

          # gather the results from all the processors

          if comm_rank == 0:

          print Start to gather results from all processors

          all_max_label = np.hstack(comm.allgather(local_max_label))

          all_max_score = np.hstack(comm.allgather(local_max_score))

          # get terminate label of unlabeled data

          if comm_rank == 0:

          print Start to analysis the results...

          right_predict_count = 0

          for i in xrange(num_unlabel_samples):

          if i % 1000 == 0:

          print ***, all_max_score[i]

          max_idx = np.argmax(all_max_score[i])

          max_label = all_max_label[i, max_idx]

          if int(unlabel_data_id[i]) == int(labels_id[max_label]):

          right_predict_count += 1

          accuracy = float(right_predict_count) * 100.0 / num_unlabel_samples

          print Have %d samples, accuracy: %.3f%%! % (num_unlabel_samples, accuracy)

          if __name__ == '__main__':

          run_label_propagation_sparse(knn_num_neighbors = 20, max_iter = 30)



          關(guān)鍵詞:

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉