如何正確理解SiC MOSFET的靜態(tài)和動(dòng)態(tài)特性
CoolSiC? MOSFET集高性能、堅(jiān)固性和易用性于一身。由于開關(guān)損耗低,它們的效率很高,因此可以實(shí)現(xiàn)高功率密度。但盡管如此,工程師需要了解器件的靜態(tài)和動(dòng)態(tài)性能以及關(guān)鍵影響參數(shù),以實(shí)現(xiàn)他們的設(shè)計(jì)目標(biāo)。在下面的文章中,我們將為您提供更多關(guān)于這方面的見解。
本文引用地址:http://cafeforensic.com/article/202206/435474.htm溫度對CoolSiC? MOSFET導(dǎo)通特性的影響
MOSFET靜態(tài)輸出特性的關(guān)鍵參數(shù)是漏極-源極導(dǎo)通電阻RDS(on)。我們定義了CoolSiC? MOSFET不同溫度下的輸出特性曲線,如圖1左側(cè)所述。閾值電壓VGS(th)遵循器件的物理原理,隨著溫度的升高而下降,如圖1右側(cè)所示。
圖1:45mΩ 1200V CoolSiC? MOSFET在室溫和175°C下的輸出特性(左)以及Ron和VGS(th)對溫度的依賴性(右)
圖1右側(cè)可見,CoolSiC? MOSFET的導(dǎo)通電阻呈明顯的正溫度系數(shù)的,這是低溝道缺陷密度的結(jié)果,使得該器件非常適合并聯(lián)使用。這是與DMOS(雙擴(kuò)散金屬氧化物半導(dǎo)體)元件的另一個(gè)顯著區(qū)別。DMOS通常顯示出電阻對溫度的依賴性較弱,因?yàn)樗鼈儨系乐械娜毕菝芏雀摺?/p>
DMOS這種電阻對溫度依賴性弱的特性乍聽起來很有吸引力。然而,隨著向更低的導(dǎo)通電阻的發(fā)展,漂移區(qū)的正溫度系數(shù)將越來越多地主導(dǎo)總的導(dǎo)通電阻。因此,SiC MOSFET將變得更像硅。即使如此,SiC MOSFET的實(shí)際溫度系數(shù)也會(huì)低于相同阻斷電壓下的硅器件。這是由于其絕對摻雜密度較高的結(jié)果。此外,由于漂移區(qū)對總電阻的貢獻(xiàn)越來越大,在較高的阻斷電壓下,導(dǎo)通電阻的溫度依賴性將更加明顯。圖2定性顯示了這種行為。
圖2:MOSFETs的導(dǎo)通電阻的主要行為與溫度的關(guān)系,以及與硅的比較。
同步整流改善體二極管的導(dǎo)通特性
與IGBT(絕緣柵雙極型晶體管)相比,垂直MOSFET(如CoolSiC?器件)通過體二極管提供反向?qū)窂剑@實(shí)際上是一個(gè)續(xù)流二極管。然而,由于SiC的寬帶隙,該二極管的轉(zhuǎn)折電壓約為3V,相對較高。這意味著連續(xù)工作將導(dǎo)致高導(dǎo)通損耗。因此,工程師需要使用同步整流,使二極管只是在一個(gè)很短的死區(qū)時(shí)間內(nèi)工作。在這段時(shí)間之后,通過像第一象限模式那樣施加一個(gè)正的VGS,溝道再次被打開。
這種工作方案在第三象限模式中提供了非常低的導(dǎo)通損耗,因?yàn)闆]有轉(zhuǎn)折電壓,實(shí)現(xiàn)了與第一象限模式中相同的電阻,實(shí)際上,該電阻甚至略低。這是因?yàn)镴FET(結(jié)型場效應(yīng)晶體管)的影響減少了。圖3顯示了不同柵極電壓下第三象限操作的I-V特性。請注意,由于p-n二極管的結(jié)構(gòu),也可以實(shí)現(xiàn)一定的脈沖電流處理能力,這可能比正向?qū)顟B(tài)下,器件所允許的脈沖電流更高。
圖3:45mΩ CoolSiC? MOSFET的體二極管的I-V行為
電容決定了SiC-MOSFET的動(dòng)態(tài)性能
作為一個(gè)單極器件,SiC MOSFET的電容在很大程度上決定了其動(dòng)態(tài)性能。與輸入電容Ciss相比,SiC MOSFET的米勒電容Crss更小。這有利于抑制寄生導(dǎo)通,因此,在半橋電路中運(yùn)行時(shí),可以避免使用復(fù)雜的柵極驅(qū)動(dòng)電路。即使使用0V的關(guān)斷電壓,許多CoolSiC? MOSFET可以安全地關(guān)斷。這是因?yàn)槌藘?yōu)化的電容比例(Crss/Ciss)之外,CoolSiC? MOSFET的閾值電壓也足夠高。圖4中的左圖總結(jié)了元件電容與VDS的關(guān)系。
圖4的右邊顯示了4腳TO-247封裝中的單器件半橋的典型開關(guān)損耗與漏極電流的關(guān)系。關(guān)斷能量Eoff只略微依賴負(fù)載電流,因?yàn)樗怯呻娙葜鲗?dǎo)的。相比之下,開通能量Eon隨電流線性增加,并主導(dǎo)著總損耗Etot。根據(jù)2019年年中的狀況,我們應(yīng)該強(qiáng)調(diào),CoolSiC? MOSFET在市售的1200V SiC MOSFET中顯示了最低的Eon。Eon和Eoff幾乎與溫度無關(guān)。需要注意的是,實(shí)際的封裝設(shè)計(jì)對開關(guān)損耗有很大的影響,主要是對導(dǎo)通損耗。開爾文引腳(TO247 4pin)在電流方面將功率回路與控制回路分開,因此有助于防止di/dt對柵極電壓的反饋,從而降低動(dòng)態(tài)損耗。
圖4:45mΩ CoolSiC? MOSFET的典型器件電容與漏極-源極電壓的關(guān)系(左),開關(guān)損耗與漏極電流的關(guān)系(右)(在VGS=15/-5V,RG_ext=4.5Ω,VDS=800V,Tvj =175°條件下)
CoolSiC? MOSFET的柵極電荷曲線通常與硅功率器件的典型形狀不同。特別是,如圖5左側(cè)所示,沒有明顯的米勒平臺(tái)。在ID=30A、VDS=800V和RG_ext=3.3kΩ、VGS(off)=-5V至VGS(on)=15 V時(shí),總柵極電荷Qtot通常為75nC。
通常情況下,可能需要調(diào)整開關(guān)速度(dv/dt),以處理振蕩等問題。MOSFET的一個(gè)優(yōu)點(diǎn)是可以通過柵極電阻調(diào)整斜率,與合適的驅(qū)動(dòng)電路相結(jié)合,它甚至能實(shí)現(xiàn)開啟和關(guān)閉時(shí)不同的變化率。右邊的圖5顯示了我們的45mΩ 1200V CoolSiC? MOSFET的相應(yīng)行為。
圖5:45mΩ 1200V CoolSiC? MOSFET的典型柵極電荷曲線(左)和通過RG,ext控制開關(guān)速度的能力(右)。
SiC MOSFET的短路特性
圖6左邊是兩個(gè)45mΩ 1200V CoolSiC? MOSFET的短路波形:一個(gè)是4腳的TO-247封裝,另一個(gè)是3腳TO-247封裝。圖中顯示了兩者在VDS=800V的直流電壓下的情況。器件的短路波形與IGBT有很大的不同。最初,漏極電流迅速增加并達(dá)到一個(gè)電流峰值。由于開爾文源設(shè)計(jì)中的反饋回路減少,4腳TO-247封裝的MOSFET的電流上升得更快,在短路事件開始時(shí),它也顯示出較少的自熱,峰值電流很高,超過300A。相反,3腳TO-247封裝的器件顯示出較小的峰值電流。造成這種情況的主要原因是di/dt作用于3腳元件的功率回路中的雜散電感,產(chǎn)生的瞬時(shí)電壓對VGS產(chǎn)生負(fù)反饋,從而降低了開關(guān)速度。由于開爾文連接方案能夠?qū)崿F(xiàn)更快的開關(guān),消除了這種影響。因此在退飽和效應(yīng)發(fā)生之前,4引腳器件的電流也可以上升到更高的值。
在峰值電流之后,漏極電流下降到大約150A。這是因?yàn)檩d流子遷移率的降低和自熱導(dǎo)致的溫度上升而產(chǎn)生了更明顯的JFET效應(yīng)。測試波形干凈穩(wěn)定,這證明了兩種封裝的TO-247 CoolSiC? MOSFET的典型3μs短路能力。對于功率模塊,根據(jù)相關(guān)的目標(biāo)應(yīng)用要求,目前的短路能力最高為2μs。我們的CoolSiC? MOSFET是第一個(gè)在數(shù)據(jù)表中保證短路耐受時(shí)間的器件。
為滿足目標(biāo)電源應(yīng)用的要求,CoolSiC? MOSFET技術(shù)在雪崩情況下顯示出高度的魯棒性。圖6右邊描述了一個(gè)1200V元件的典型雪崩行為。(新發(fā)布的650V器件CoolSiC?在數(shù)據(jù)表中標(biāo)注了雪崩等級)
圖6:在25°C下,典型的短路是持續(xù)時(shí)間的函數(shù)(左),以及1200V器件的雪崩行為,在60V下關(guān)閉3.85mH的無鉗位電感負(fù)載(右)。
評論