色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁(yè) > 智能計(jì)算 > 設(shè)計(jì)應(yīng)用 > 從隱空間認(rèn)識(shí)CLIP多模態(tài)模型

          從隱空間認(rèn)識(shí)CLIP多模態(tài)模型

          作者:高煥堂(銘傳大學(xué)、長(zhǎng)庚大學(xué)教授) 時(shí)間:2023-05-18 來源:電子產(chǎn)品世界 收藏


          本文引用地址:http://cafeforensic.com/article/202305/446732.htm

          1 前言

          AIGC可生成的內(nèi)容形式包含文本( 文句)、圖像、音頻和視頻。它能將文本中的語言符號(hào)信息或知識(shí),與視覺中可視化的信息( 或知識(shí)) 建立出對(duì)應(yīng)的關(guān)聯(lián)。兩者互相加強(qiáng),形成圖文并茂的景象,激發(fā)人腦更多想象,擴(kuò)大人們的思維空間。其中,最基礎(chǔ)的就是文本(Text) 與圖像(Image) 之間的知識(shí)關(guān)聯(lián)。本篇來介紹文本與圖像的關(guān)聯(lián),并以CLIP 模型為例,深入介紹多模態(tài)AIGC 模型的幕后架構(gòu),例如隱空間(Latent space) 就是其中的關(guān)鍵性機(jī)制。

          2 簡(jiǎn)介CLIP模型

          在2020 年,OpenAI 團(tuán)隊(duì)提出了CLIP,它是典型的多模態(tài)(Multi-modal) 機(jī)器學(xué)習(xí)模型。OpenAI 從互聯(lián)網(wǎng)上找到大量的文本(Text) 與圖像(Image) 的配對(duì),可以用來訓(xùn)練CLIP 模型,然后讓CLIP 進(jìn)行其預(yù)測(cè)任務(wù),即是輸入1 張圖像,然后預(yù)測(cè)出哪一個(gè)文本與它是配對(duì)的。

          CLIP 的目標(biāo)是透過大量圖片及文字描述,建立兩者間的對(duì)應(yīng)關(guān)系。其做法是利用ResNet50 等來萃取圖像的特征,并映射到隱空間(Latent space)。也就是將圖像編碼成為隱空間向量。

          同時(shí),也利用Transformer 萃取與圖像相配對(duì)文句的特征,并將文句編碼成為隱空間向量。最后經(jīng)由模型訓(xùn)練來逐漸提高兩個(gè)向量的相似度。換句話說,CLIP能將圖像和文句映像到同一個(gè)隱空間,因此可以迅速計(jì)算圖像與文句的相似度。

          CLIP 模型學(xué)習(xí)整個(gè)文句與其對(duì)應(yīng)的圖像之間的關(guān)系。當(dāng)我們?cè)谡麄€(gè)文句上訓(xùn)練時(shí),模型可以學(xué)到更多的潛在的東西,并在圖像和文句之間找到一些規(guī)律。值得留意的是,在訓(xùn)練CLIP 模型時(shí),我們輸入的是整個(gè)文句,而不是像貓、狗、汽車、電影等單一類別而已。

          3 CLIP的基本架構(gòu)

          CLIP 的核心設(shè)計(jì)概念是,把各文句和圖像映射到隱空間里的一個(gè)點(diǎn)( 以向量表示)。針對(duì)每一個(gè)文句和圖像都會(huì)提取其特征,并映射到這個(gè)隱空間里的某一點(diǎn)。然后經(jīng)由矩陣運(yùn)算,來估計(jì)它們之間的相似度,如圖1。

          1684404259682547.png

          圖1 CLIP的基本概念(來源:https://openai.com/research/clip)

          在訓(xùn)練CLIP 模型的過程中,會(huì)不斷調(diào)整各點(diǎn)的位置( 在隱空間里),以表達(dá)出它們之間的相似度。CLIP在整合文句與圖像兩種模態(tài)上有突破性的表現(xiàn)。一旦訓(xùn)練完成之后,就可以對(duì)新圖像進(jìn)行預(yù)測(cè)了,亦即預(yù)測(cè)出一個(gè)文本與它是配對(duì)的。例如,輸入1 張新圖像,經(jīng)由圖像編碼器( 如ResNet50) 來提取這張圖象的特征,然后映射到隱空間里的一個(gè)新的點(diǎn)。

          然后經(jīng)由矩陣運(yùn)算,即可預(yù)測(cè)出它與我們所給的一些文句的相似度,就可以得到預(yù)測(cè)值了。此外,CLIP也能輸入描述文句來找到相對(duì)應(yīng)的圖像。

          4 圖解CLIP的空間對(duì)映

          茲以中藥材的CLIP為例,例如有4 張中藥材的圖像,以及其對(duì)應(yīng)的文句,或單詞( 圖2)。

          1684404340393511.png

          圖2 中藥名字對(duì)應(yīng)的圖片

          這里的文本與圖像之間的對(duì)應(yīng)關(guān)聯(lián),可以是人們給予的,也可以是從互聯(lián)網(wǎng)頁(yè)的數(shù)據(jù)而得來的。那么CLIP模型就來建立這些關(guān)聯(lián)性。

          在前面已經(jīng)說明了,CLIP會(huì)利用ResNet50等模型來協(xié)助提取各圖像的特征,并將各圖像( 隨機(jī)) 對(duì)映到隱空間( 即數(shù)學(xué)上歐式空間) 的點(diǎn)。同時(shí),也使用Transformer模型來幫助提取個(gè)文句的特征,并將各文本( 隨機(jī)) 對(duì)映到隱空間的點(diǎn)( 圖3)。

          1684404457133947.png

          圖3 將中藥名字和圖像對(duì)應(yīng)到隱空間中

          這就是空間對(duì)映(Space mapping),意味著從可觀察空間( 即上圖里的圖像和文句空間) 對(duì)映到隱空間。

          5 展開訓(xùn)練

          在進(jìn)行訓(xùn)練的過程中逐漸地修正CLIP 模型里的參數(shù)( 如weight 和bias 值),也就是逐漸地調(diào)整隱空間里各點(diǎn)的位置( 坐標(biāo)),來呈現(xiàn)出這些點(diǎn)之間的相似性(Similarity)。例如,在隱空間里,我們可以讓愈相似的點(diǎn),會(huì)愈相互靠近( 圖4)。

          1684404532572883.png

          圖4 隱空間訓(xùn)練過程

          以上訓(xùn)練完成了。其智能表達(dá)于模型里的參數(shù)( 如weight和bias) 值里。雖然人們可以理解文本和圖像的涵意,但并無法理解模型里的參數(shù),以及所計(jì)算出的隱空間向量的涵意,所以才稱為隱藏性空間,或稱黑箱(Block-box)。

          6 預(yù)測(cè)范例1:從圖像找文本

          在剛才的訓(xùn)練過程中,CLIP 已經(jīng)持續(xù)調(diào)整各筆數(shù)據(jù)( 如文本和圖像) 的其隱空間里的位置( 以隱空間向量表示),來表達(dá)其所蘊(yùn)含的關(guān)聯(lián)性。一旦訓(xùn)練完成了,就能進(jìn)入預(yù)測(cè)或推理的階段了。

          例如,拿來1 張新圖像輸入給CLIP,它就( 要求ResNet50 等) 來幫忙提取這新圖像的特征,并依據(jù)其所訓(xùn)練出來的參數(shù)( 即weight 和bias) 值,而計(jì)算( 對(duì)映)出這個(gè)新點(diǎn)在隱空間里的位置( 圖5)。

          1684404581379313.png

          圖5 計(jì)算新點(diǎn)在隱空間里的位置

          由于這張新圖像的特征與左邊第3 張( 由上而下)圖像特征很接近,也就意味著這兩張圖象很相似,所以在潛藏空間里兩者會(huì)很靠近。如此,計(jì)算出這個(gè)新點(diǎn)與其他各點(diǎn)之相似度,然后挑出相似性最高的文本是:枸杞( 圖6)。于是,就順利完成從圖像關(guān)連到文本的任務(wù)了。

          1684404723243646.png

          圖6

          7 預(yù)測(cè)范例2:從文本找圖像

          剛才的范例是:從圖找文。CLIP 還可以提供:從文找圖。例如,拿來一個(gè)新文句輸入給CLIP,它就(要求Transformer 等) 來幫忙提取這新文句的特征,并依據(jù)其所訓(xùn)練出來的參數(shù)(即weight 和bias) 值,而計(jì)算(對(duì)映) 出整潛藏空間里這個(gè)新點(diǎn)的位置。接著,計(jì)算出這點(diǎn)與其他各點(diǎn)之相似度,然后挑出相似性最高的圖像( 圖7)。

          1684404791835899.png

          圖7

          由于CLIP 幕后有Transformer 預(yù)訓(xùn)練模型來幫忙,可以發(fā)現(xiàn)”寧夏枸杞”與”銀川枸杞”兩個(gè)文本很相似,就找出與”銀川枸杞”相對(duì)應(yīng)( 即相似性高) 圖像了。

          8 結(jié)束語

          在互聯(lián)網(wǎng)上,CLIP 可以找到非常大量的圖像,以及描述這些圖像的文字,而且涵蓋各行各業(yè),非常廣泛,使得CLIP 成為一項(xiàng)通用性極高的雙模態(tài)AIGC 模型。

          (本文來源于《電子產(chǎn)品世界》雜志2023年5月期)



          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉