光電二極管檢測電路的工作原理及設(shè)計方案
光電二極管及其相關(guān)的前置放大器是基本物理量和電子量之間的橋梁。許多精密應(yīng)用領(lǐng)域需要檢測光亮度并將之轉(zhuǎn)換為有用的數(shù)字信號。光檢測電路可用于CT掃描儀、血液分析儀、煙霧檢測器、位置傳感器、紅外高溫計和色譜分析儀等系統(tǒng)中。在這些電路中,光電二極管產(chǎn)生一個與照明度成比例的微弱電流。而前置放大器將光電二極管傳感器的電流輸出信號轉(zhuǎn)換為一個可用的電壓信號??雌饋砗孟笥靡粋€光電二極管、一個放大器和一個電阻便能輕易地實現(xiàn)簡單的電流至電壓的轉(zhuǎn)換,但這種應(yīng)用電路卻提出了一個問題的多個側(cè)面。為了進(jìn)一步擴(kuò)展應(yīng)用前景,單電源電路還在電路的運行、穩(wěn)定性及噪聲處理方面顯示出新的限制。
本文將分析并通過模擬驗證這種典型應(yīng)用電路的穩(wěn)定性及噪聲性能。首先探討電路工作原理,然后如果讀者有機(jī)會的話,可以運行一個SPICE模擬程序,它會很形象地說明電路原理。以上兩步是完成設(shè)計過程的開始。第三步也是最重要的一步(本文未作討論)是制作實驗?zāi)M板。
1 光檢測電路的基本組成和工作原理
設(shè)計一個精密的光檢測電路最常用的方法是將一個光電二極管跨接在一個CMOS輸入放大器的輸入端和反饋環(huán)路的電阻之間。這種方式的單電源電路示于圖1中。
在該電路中,光電二極管工作于光致電壓(零偏置)方式。光電二極管上的入射光使之產(chǎn)生的電流ISC從負(fù)極流至正極,如圖中所示。由于CMOS放大器反相輸入端的輸入阻抗非常高,二極管產(chǎn)生的電流將流過反饋電阻RF。輸出電壓會隨著電阻RF兩端的壓降而變化。
圖中的放大系統(tǒng)將電流轉(zhuǎn)換為電壓,即
VOUT = ISC ×RF (1)
圖1 單電源光電二極管檢測電路
式(1)中,VOUT是運算放大器輸出端的電壓,單位為V;ISC是光電二極管產(chǎn)生的電流,單位為A;RF是放大器電路中的反饋電阻,單位為W 。圖1中的CRF是電阻RF的寄生電容和電路板的分布電容,且具有一個單極點為1/(2p RF CRF)。
用SPICE可在一定頻率范圍內(nèi)模擬從光到電壓的轉(zhuǎn)換關(guān)系。模擬中可選的變量是放大器的反饋元件RF。用這個模擬程序,激勵信號源為ISC,輸出端電壓為VOUT。
此例中,RF的缺省值為1MW ,CRF為0.5pF。理想的光電二極管模型包括一個二極管和理想的電流源。給出這些值后,傳輸函數(shù)中的極點等于1/(2p RFCRF),即318.3kHz。改變RF可在信號頻響范圍內(nèi)改變極點。
遺憾的是,如果不考慮穩(wěn)定性和噪聲等問題,這種簡單的方案通常是注定要失敗的。例如,系統(tǒng)的階躍響應(yīng)會產(chǎn)生一個其數(shù)量難以接受的振鈴輸出,更壞的情況是電路可能會產(chǎn)生振蕩。如果解決了系統(tǒng)不穩(wěn)定的問題,輸出響應(yīng)可能仍然會有足夠大的“噪聲”而得不到可靠的結(jié)果。
實現(xiàn)一個穩(wěn)定的光檢測電路從理解電路的變量、分析整個傳輸函數(shù)和設(shè)計一個可靠的電路方案開始。設(shè)計時首先考慮的是為光電二極管響應(yīng)選擇合適的電阻。第二是分析穩(wěn)定性。然后應(yīng)評估系統(tǒng)的穩(wěn)定性并分析輸出噪聲,根據(jù)每種應(yīng)用的要求將之調(diào)節(jié)到適當(dāng)?shù)乃健?/P>
這種電路中有三個設(shè)計變量需要考慮分析,它們是:光電二極管、放大器和R//C反饋網(wǎng)絡(luò)。首先選擇光電二極管,雖然它具有良好的光響應(yīng)特性,但二極管的寄生電容將對電路的噪聲增益和穩(wěn)定性有極大的影響。另外,光電二極管的并聯(lián)寄生電阻在很寬的溫度范圍內(nèi)變化,會在溫度極限時導(dǎo)致不穩(wěn)定和噪聲問題。為了保持良好的線性性能及較低的失調(diào)誤差,運放應(yīng)該具有一個較小的輸入偏置電流(例如CMOS工藝)。此外,輸入噪聲電壓、輸入共模電容和差分電容也對系統(tǒng)的穩(wěn)定性和整體精度產(chǎn)生不利的影響。最后,R//C反饋網(wǎng)絡(luò)用于建立電路的增益。該網(wǎng)絡(luò)也會對電路的穩(wěn)定性和噪聲性能產(chǎn)生影響。
2 光檢測電路的SPICE模型
2.1 光電二極管的SPICE模型
一個光電二極管有兩種工作方式:光致電壓和光致電導(dǎo),它們各有優(yōu)缺點。在這兩種方式中,光照射到二極管上產(chǎn)生的電流ISC方向與通常的正偏二極管正常工作時的方向相反,即從負(fù)極到正極。
光電二極管的工作模型示于圖2中,它由一個被輻射光激發(fā)的電流源、理想的二極管、結(jié)電容和寄生的串聯(lián)及并聯(lián)電阻組成。
圖2 非理想的光電二極管模型
當(dāng)光照射到光電二極管上時,電流便產(chǎn)生了,不同二極管在不同環(huán)境中產(chǎn)生的電流ISC、具有的CPD、RPD值以及圖中放大器輸出電壓為0~5V所需的電阻RF值均不同,例如SD-020-12-001硅光電二極管,在正常直射陽光(1000fc[英尺-燭光])時,ISC=30m A、CPD=50pF、RPD=1000MW 、RF=167kW ;睛朗白天(100fc)時,ISC = 3m A、CPD=50pF、RPD= 1000 MW 、RF=1.67MW ;桌上室內(nèi)光(1.167fc)時,ISC=35nA、CPD=50pF、RPD=1000MW 、RF=142.9MW ??梢姽庹詹煌瑫r,ISC有顯著變化,而CPD、RPD基本不變。
工作于光致電壓方式下的光電二極管上沒有壓降,即為零偏置。在這種方式中,為了光靈敏度及線性度,二極管被應(yīng)用到最大限度,并適用于精密應(yīng)用領(lǐng)域。影響電路性能的關(guān)鍵寄生元件為CPD和RPD,它們會影響光檢測電路的頻率穩(wěn)定性和噪聲性能。
結(jié)電容CPD是由光電二極管的P型和N型材料之間的耗盡層寬度產(chǎn)生的。耗盡層窄,結(jié)電容的值大。相反,較寬的耗盡層(如PIN光電二極管)會表現(xiàn)出較寬的頻譜響應(yīng)。硅二極管結(jié)電容的數(shù)值范圍大約從20或25pF到幾千pF以上。結(jié)電容對穩(wěn)定性、帶寬和噪聲等性能產(chǎn)生的重要影響將在下面討論。
在光電二極管的數(shù)據(jù)手冊中,寄生電阻RPD也稱作“分流”電阻或“暗”電阻。該電阻與光電二極管零偏或正偏有關(guān)。在室溫下,該電阻的典型值可超過100MW 。對于大多數(shù)應(yīng)用,該電阻的影響可被忽略。
分流電阻RPD是主要的噪聲源,這種噪聲在圖2中示為ePD。RPD產(chǎn)生的噪聲稱作散粒噪聲(熱噪聲),是由于載流子熱運動產(chǎn)生的。
二極管的第二個寄生電阻RS稱為串聯(lián)電阻,其典型值從10W 到1000W 。由于此電阻值很小,它僅對電路的頻率響應(yīng)有影響。光電二極管的漏電流IL是引發(fā)誤差的第四個因素。如果放大器的失調(diào)電壓為零,這種誤差很小。
與光致電壓方式相反,光致電導(dǎo)方式中的光電二極管具有一個反向偏置電壓加至光傳感元件的兩端。當(dāng)此電壓加至光檢測器上時,耗盡層的寬度會增加,從而大幅度地減小寄生電容CPD的值。寄生電容值的減小有利于高速工作,然而,線性度和失調(diào)誤差尚未最優(yōu)化。這個問題的折衷設(shè)計將增加二極管的漏電流IL和線性誤差。
下面將集中討論光致電壓方式下的光電二極管的應(yīng)用領(lǐng)域。
2.2 運放的SPICE模型
運算放大器具有范圍較寬的技術(shù)指標(biāo)及性能參數(shù),它對光檢測電路的穩(wěn)定性和噪聲性能影響很少。其主要參數(shù)示于圖3的模型中,它包括一個噪聲源電壓、每個輸入端的寄生共模電容、輸入端之間的寄生電容及與頻率有關(guān)的開環(huán)增益。
輸入差分電容CDIFF和輸入共模電容CCM是直接影響電路穩(wěn)定性和噪聲性能的寄生電容。這些寄生電容在數(shù)據(jù)手冊中通常規(guī)定為典型值,基本不隨時間和溫度變化。
另一個涉及到輸入性能的是噪聲電壓,該參數(shù)可模擬為運放同相輸入端的噪聲源。此噪聲源為放大器產(chǎn)生的所有噪聲的等效值。利用此噪聲源可建立放大器的全部頻譜模型,包括1/f噪聲或閃爍噪聲以及寬帶噪聲。討論中假設(shè)采用CMOS輸入放大器,則輸入電流噪聲的影響可忽略不計。
圖3 非理想的運放模型
當(dāng)運行SPICE噪聲模擬程序時,必須使用一個獨立的交流電壓源或電流源。為了模擬放大器的輸入噪聲RTI,一個獨立的電壓源VIN應(yīng)加在放大器的同相輸入端。另外,電路中的反饋電阻保持較低值(100W ),以便在評估中不影響系統(tǒng)噪聲。
相關(guān)推薦
焦點
更多>>推薦視頻
更多>>技術(shù)專區(qū)
- FPGA
- DSP
- MCU
- 示波器
- 步進(jìn)電機(jī)
- Zigbee
- LabVIEW
- Arduino
- RFID
- NFC
- STM32
- Protel
- GPS
- MSP430
- Multisim
- 濾波器
- CAN總線
- 開關(guān)電源
- 單片機(jī)
- PCB
- USB
- ARM
- CPLD
- 連接器
- MEMS
- CMOS
- MIPS
- EMC
- EDA
- ROM
- 陀螺儀
- VHDL
- 比較器
- Verilog
- 穩(wěn)壓電源
- RAM
- AVR
- 傳感器
- 可控硅
- IGBT
- 嵌入式開發(fā)
- 逆變器
- Quartus
- RS-232
- Cyclone
- 電位器
- 電機(jī)控制
- 藍(lán)牙
- PLC
- PWM
- 汽車電子
- 轉(zhuǎn)換器
- 電源管理
- 信號放大器
評論