基于雙無(wú)跡卡爾曼濾波的自動(dòng)駕駛狀態(tài)慣性監(jiān)測(cè)
摘要:本研究有助于提高自動(dòng)駕駛狀態(tài)慣性監(jiān)測(cè)能力,對(duì)自動(dòng)駕駛技術(shù)的提高有一定的理論支撐意義。
本文引用地址:http://cafeforensic.com/article/202308/449799.htm1 引言
為了對(duì)分布動(dòng)力結(jié)構(gòu)汽車進(jìn)行主動(dòng)控制,需要對(duì)其行駛階段的各項(xiàng)動(dòng)力學(xué)參數(shù)開展精確采集與分析,但在信息測(cè)試過(guò)程中需要配備高成本的傳感器檢測(cè)設(shè)備,并且也無(wú)法滿足信號(hào)可靠度要求,同時(shí)還需關(guān)注車輛質(zhì)心偏角等指標(biāo)[1-2]。
為了達(dá)到自動(dòng)駕駛目標(biāo),需要設(shè)計(jì)合適的線控轉(zhuǎn)向系統(tǒng),當(dāng)傳統(tǒng)汽車發(fā)生轉(zhuǎn)向系統(tǒng)的失效問題時(shí),汽車只能進(jìn)入減速狀態(tài)并最終完成停車,不能對(duì)軌跡進(jìn)行精確跟蹤,甚至還會(huì)造成交通事故[5-6]。由此可見,如何調(diào)節(jié)轉(zhuǎn)向系統(tǒng)故障容錯(cuò)能力已經(jīng)成為一項(xiàng)關(guān)鍵措施。在分布結(jié)構(gòu)電驅(qū)動(dòng)汽車系統(tǒng)中可以設(shè)置多個(gè)電機(jī)形成橫擺力作用再對(duì)轉(zhuǎn)向系統(tǒng)橫向偏差進(jìn)行補(bǔ)償,由此確保轉(zhuǎn)向系統(tǒng)失效的情況下也可以保持設(shè)定軌跡路線行使,實(shí)現(xiàn)駕駛安全性能的大幅提升[7-8]?,F(xiàn)階段,已有許多國(guó)內(nèi)外學(xué)者開展了車輛動(dòng)力系統(tǒng)運(yùn)行參數(shù)方面的觀測(cè)分析,形成了Luenberger 觀測(cè)器、二乘估計(jì)( RLS)、卡爾曼濾波(KF)、滑模測(cè)試(SMO)、非線性監(jiān)測(cè)等不同類型的算法。由于載荷存在不確定的情況,這使得車輛慣性參數(shù)如質(zhì)量、橫擺轉(zhuǎn)動(dòng)慣量也發(fā)生改變,從而對(duì)整體操控性與結(jié)構(gòu)穩(wěn)定性產(chǎn)生明顯影響,對(duì)車輛慣性參數(shù)開展實(shí)時(shí)監(jiān)測(cè)也成為當(dāng)前的一項(xiàng)重要信息分析工作[9]。
雖然目前已在車輛狀態(tài)分析方面獲得了一定的研究進(jìn)展,但尚未針對(duì)車輛慣性參數(shù)開展深入探討[10]。根據(jù)擴(kuò)展卡爾曼濾波(EKF) 與RLS 估計(jì)得到加權(quán)值,同時(shí)引入混合動(dòng)力電動(dòng)公交車混合估計(jì)方法[11]。為能夠?qū)囕v動(dòng)力慣性參數(shù)開展非線性評(píng)價(jià),需要開發(fā)分布結(jié)構(gòu)驅(qū)動(dòng)力卡爾曼濾波(DUKF) 方法與觀測(cè)系統(tǒng)聯(lián)合系統(tǒng)車輛慣性監(jiān)測(cè)。
2 車輛狀態(tài)參數(shù)聯(lián)合觀測(cè)系統(tǒng)設(shè)計(jì)
針對(duì)車輛控制系統(tǒng)建立并聯(lián)雙無(wú)跡卡爾曼濾波(DUKF) 觀測(cè)方法時(shí),根據(jù)車輛信息測(cè)試結(jié)果構(gòu)建非線性車輛DUKF 狀態(tài)方程并建立分析算法。在分布結(jié)構(gòu)驅(qū)動(dòng)電動(dòng)汽車傳感器中,除了具備傳統(tǒng)傳感器慣性量參數(shù)如質(zhì)心橫擺角速度、縱向和側(cè)向加速度以外[12],還可以提供輪轂電機(jī)傳感器進(jìn)行車輪角速度測(cè)試,同時(shí)利用電壓信號(hào)輪轂轉(zhuǎn)矩與線控系統(tǒng)采集轉(zhuǎn)向過(guò)程轉(zhuǎn)角信號(hào),圖1給出了電動(dòng)汽車雙無(wú)跡卡爾曼濾波觀測(cè)器的具體結(jié)構(gòu),為車輛DUKF 觀測(cè)器構(gòu)建以下狀態(tài)計(jì)算式和觀測(cè)算法。
圖1 車輛DUKF觀測(cè)器結(jié)構(gòu)
(1)
對(duì)于以上狀態(tài)觀測(cè)系統(tǒng),x(t) ∈ ?n、θ(t) ∈ ?n 依次對(duì)應(yīng)非線性動(dòng)力觀測(cè)器的狀態(tài)與參數(shù)矢量,u(t) ∈ ?n與y(t) ∈ ?n 屬于車輛非線性動(dòng)力學(xué)觀測(cè)器輸入與量測(cè)矢量,w(t) ∈ ?n、v(t) ∈ ?n 屬于系統(tǒng)過(guò)程噪與量測(cè)噪聲,這2 個(gè)參數(shù)再系統(tǒng)中呈現(xiàn)不相關(guān)的忒單,并且均值都為零。
進(jìn)行估計(jì)的時(shí)候,電動(dòng)汽車慣性參數(shù)比運(yùn)動(dòng)狀態(tài)的變化速度更慢,假定慣性參數(shù)呈現(xiàn)小幅擾動(dòng)狀態(tài),可以建立以下的參數(shù)估計(jì)系統(tǒng):
(2)
進(jìn)行估計(jì)的時(shí)候,電動(dòng)汽車慣性參數(shù)比運(yùn)動(dòng)狀態(tài)的變化速度更慢,假定慣性參數(shù)呈現(xiàn)小幅擾動(dòng)狀態(tài)。
x(t) = (r z,V x,β,a y,F yij,V y)T,
y(t)=(r z,a x,a y)T
u(t)=(δ f,ωij,Tij)T,θ(t)= (m n,I zz )T (3)
由于DUKF算法屬于一類遞推形式的預(yù)估―校正算法,需采用離散化方法襯里車輛非線性動(dòng)力學(xué)觀測(cè)器。
擴(kuò)展卡爾曼濾波(EKF) 方法已經(jīng)成為汽車動(dòng)研究領(lǐng)域獲得廣泛應(yīng)用的非線性系統(tǒng)濾波技術(shù),從本質(zhì)層面分析,EKF 是對(duì)最優(yōu)狀態(tài)下的非線性系統(tǒng)模型實(shí)施Taylor級(jí)數(shù)一階展開的過(guò)程,通過(guò)轉(zhuǎn)換非線性濾波過(guò)程得到線性濾波結(jié)果, 經(jīng)過(guò)線性化處理后形成了明顯高階項(xiàng)截?cái)嗾`差[13];UKF 屬于非線性系統(tǒng)內(nèi)進(jìn)行統(tǒng)計(jì)特性分析的新方法,通過(guò)設(shè)定一組確定采樣Sigma 點(diǎn)對(duì)概率密度分布結(jié)果進(jìn)行近似后驗(yàn)證計(jì)算,同時(shí)利用Unscented 轉(zhuǎn)換的方式來(lái)消除EKF 線性化過(guò)程產(chǎn)生的估計(jì)偏差,有效滿足了車輛的非線性動(dòng)力學(xué)評(píng)價(jià)要求。
3 仿真與分析
3.1 仿真工況
為電動(dòng)汽車設(shè)計(jì)了一種外接分布結(jié)構(gòu)驅(qū)動(dòng)系統(tǒng),并通過(guò)Matlab/Simulink 系統(tǒng)為電動(dòng)汽車構(gòu)建觀測(cè)器,CarSim 和Simulink 之間的仿真通信利用CarSim-S 函數(shù)構(gòu)成接口。進(jìn)行仿真測(cè)試時(shí),以高附著瀝青路面作為車輛測(cè)試路面,初期質(zhì)量1 235 kg,橫擺轉(zhuǎn)動(dòng)慣量2 030 kg/m2。
3.2 結(jié)果分析
為了評(píng)價(jià)DUKF 觀測(cè)器進(jìn)行車輛狀態(tài)觀測(cè)的性能,選擇激烈的正弦轉(zhuǎn)向工況作為測(cè)試條件,形成圖2 的方向盤轉(zhuǎn)角,之后通過(guò)雙擴(kuò)展卡爾曼(DEKF) 觀測(cè)器開展比較。
圖2 轉(zhuǎn)向角
圖3、圖4 顯示了正弦轉(zhuǎn)向過(guò)程的DUKF 和DEKF測(cè)試結(jié)果。分析圖3、圖4 可知,DUKF 和DEKF 兩個(gè)觀測(cè)器都可以實(shí)現(xiàn)車輛縱向速度和橫擺角速度的穩(wěn)定觀測(cè)性能,都可以實(shí)現(xiàn)很低的狀態(tài)觀測(cè)誤差,對(duì)局部區(qū)域進(jìn)行放大分析可以發(fā)現(xiàn),采用DUKF 方法進(jìn)行觀測(cè)得到的數(shù)據(jù)比DEKF 方法更加符合實(shí)際情況;以觀測(cè)器分析車輛質(zhì)心側(cè)偏角可知,DUKF 和DEKF 對(duì)于車輛質(zhì)心側(cè)偏角觀測(cè)的結(jié)果存在較大誤差,這主要是因?yàn)檐囕v系統(tǒng)沒有設(shè)置模型動(dòng)態(tài)特性引起的,也可能是受到不準(zhǔn)確建模參數(shù)影響而降低濾波精度引起的結(jié)果,EKF 觀測(cè)值與車輛真實(shí)狀態(tài)之間存在明顯偏差,DUKF 相對(duì)DEKF的觀測(cè)誤差顯著降低,這可能是由于EKF 車輛動(dòng)力學(xué)系統(tǒng)局部線性化處理時(shí)存在高階截?cái)嗾`差。
圖3 車輛縱向速度結(jié)果
圖4 車輛橫擺角速度結(jié)果
4 結(jié)束語(yǔ)
本文開展電動(dòng)汽車并聯(lián)DUKF 狀態(tài)觀測(cè)器設(shè)計(jì)及轉(zhuǎn)向工況分析,得到如下有益結(jié)果:
1)采用DUKF 方法觀測(cè)數(shù)據(jù)比DEKF 方法更加符合實(shí)際情況;
2)DUKF 和DEKF 對(duì)于車輛質(zhì)心側(cè)偏角觀測(cè)結(jié)果存在較大誤差。
該研究有助于提高自動(dòng)駕駛的穩(wěn)定性,但存在對(duì)異常路況分析準(zhǔn)確度不高的問題,期待后續(xù)引入深度學(xué)習(xí)算法進(jìn)行加強(qiáng)。
參考文獻(xiàn):
[1] 黃偉杰,張希,朱旺旺,等.基于融合地圖的自動(dòng)駕駛激光雷達(dá)定位算法[J].傳感器與微系統(tǒng),2023,42(5):139-142.
[2] 金立生,韓廣德,謝憲毅,等.基于強(qiáng)化學(xué)習(xí)的自動(dòng)駕駛決策研究綜述[J].汽車工程,2023,45(4):527-540.
[3] 張新鋒,王萬(wàn)寶,柳歡,等.高速動(dòng)態(tài)交通場(chǎng)景下自動(dòng)駕駛車輛換道意圖識(shí)別模型研究[J].汽車技術(shù),2023,571(4): 8-15.
[4] 趙艷輝,段朝陽(yáng),李海峰,等.BTT機(jī)動(dòng)自動(dòng)駕駛儀解耦補(bǔ)償控制器設(shè)計(jì)方法[J].航空兵器,2022,29(2):106-112.
[5] 蔡英鳳,陸子恒,李祎承,等.基于多傳感器融合的緊耦合SLAM系統(tǒng)[J].汽車工程,2022,44(3):350-361.
[6] 張晶威,劉鐵軍,李仁剛,等.自動(dòng)駕駛多傳感器融合的時(shí)間校準(zhǔn)方法研究[J].汽車工程,2022,44(2): 215-224.
[7] 陳士剛.基于模型的電動(dòng)汽車PTC控制方法[J].電子產(chǎn)品世界,2021,28(9):32-34.
[8] 張京,朱愛紅.基于遺傳算法和粒子群優(yōu)化的列車自動(dòng)駕駛速度曲線優(yōu)化方法[J].計(jì)算機(jī)應(yīng)用,2022,42(2):599-605.
[9] 毛廣輝.自動(dòng)駕駛芯片需要滿足高吞吐與低時(shí)延[J].電子產(chǎn)品世界,2020,28(12):10+14.
[10] 邱威智,上官偉,柴琳果等.面向車路協(xié)同孿生仿真測(cè)試的多尺度濾波同步方法[J].交通運(yùn)輸工程報(bào),2022,22(3):199-209.
[11] 李旭,秦嗣牧,王建春.車路協(xié)同環(huán)境下的雙雷達(dá)車輛檢測(cè)和跟蹤優(yōu)化方法[J].重慶理工大學(xué)學(xué)報(bào)(自然科學(xué)),2021,35(10):42-48.
[12] 周兵,李濤,吳曉建,等.基于雙自適應(yīng)無(wú)跡卡爾曼濾波的半掛車狀態(tài)估計(jì)[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,49(2):63-73.
[13] 周標(biāo)準(zhǔn),裴???董國(guó)成.基于無(wú)跡卡爾曼濾波的月球車慣性/天文組合導(dǎo)航算法研究[J].科學(xué)技術(shù)與工程,2012,12(24):6102-6106.
(本文來(lái)源于《電子產(chǎn)品世界》雜志2023年8月期)
評(píng)論